1 / 25

O. Marchuk 1 , Yu . Ralchenko 2 , D.R. Schultz 3 , W. Biel 1 , T. Schlummer 1 and E. Stambulchik 4

Atomic data for beam-stimulated plasma spectroscopy in fusion plasmas . O. Marchuk 1 , Yu . Ralchenko 2 , D.R. Schultz 3 , W. Biel 1 , T. Schlummer 1 and E. Stambulchik 4. 1 - Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich , Germany

gallia
Download Presentation

O. Marchuk 1 , Yu . Ralchenko 2 , D.R. Schultz 3 , W. Biel 1 , T. Schlummer 1 and E. Stambulchik 4

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Atomic data for beam-stimulated plasma spectroscopy in fusion plasmas O. Marchuk1, Yu. Ralchenko2, D.R. Schultz3,W. Biel1, T. Schlummer1and E. Stambulchik4 1 - Institute of Energy and Climate Research, ForschungszentrumJülich GmbH, 52425 Jülich, Germany 2- Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA 3 -Department of Physics, University of North Texas, Denton, TX 76203, USA 4 - Weizmann Institute of Science, Rehovot, 76100, Israel ICAMDATA-2012, NIST, Gaithersburg

  2. Contents • Overviewofthediagnosticsbased on theinjectionof fast atomsintotheplasma • Whytheavailableatomicdatafor beam emissioncan not beused ? • Calculationoftheatomicdata in theparabolicrepresentation • Comparisonwith experimental data • Summary and Outlook ICAMDATA-2012, NIST, Gaithersburg

  3. Plasma Parameters in Fusion • Plasma Temperature ~ 0.2 … 20 keV • Plasma Density ~1013…1014 cm-3 • Magnetic Field ~1.. 7 T • In ordertoheattheplasmatotheseconditions • Injectionof fast atomsintotheplasma • Heatingbytheelectromagneticwaves Neutrals are also important for the core plasma! ICAMDATA-2012, NIST, Gaithersburg

  4. Plasma Heating and Beams • Typical beam parameters (H, D) • Energy 30-1000 keV/u • ITER heating 500-870 keV/u • ITER diagnostic 100 keV/u • Current 30-60 A • Power < 60 MW • Positive ionsource: 3 energycomponents • Negative ionsource: 1 energycomponent ICAMDATA-2012, NIST, Gaithersburg

  5. Diagnosticsbased on theinjectionof fast atoms Range ofplasmaparameters: Beam energy - 20.. 100 keV/u Plasma temperature - 1..10 keV Magneticfield – 1..7 T BES – beam emissionspectra PCX – passive charge-exchange ACX – activecharge-exchange H0 + H+ → H∗ + H+→ ћω (1) H0 + Xz+1 → H+ +X*z(nl)→ ћω (2) • Haspectroscopy on fast hydrogen atoms (BES) • sourceofcharge-exchange diagnostic (CXRS) ICAMDATA-2012, NIST, Gaithersburg

  6. Fields „observed“ by fast atom y B Lorentz transformationforthefield: y´ x x´ z (cgs) z´ v Beam atom • In therestframeoftheatomtheboundelectronexperiencestheeffectofcrossedmagneticandelectricfields (x´y´z´) isthecoordinatesystem in therestframeof hydrogen atom (xyz) isthelaboratorycoordinate system • Example: B = 1 T, E = 100 keV/u → v = 4.4·108 cm/s → F = 44 kV/cm • Strong electricfield in therestframeoftheatomisexperiencedbytheboundelectron • Externalfieldsareusuallyconsideredasperturbationappliedtothefield-freesolution ICAMDATA-2012, NIST, Gaithersburg

  7. Beam-emission of fast atoms in theplasma • 3 components in the beam (E/1, E/2, E/3) • Ha light fromtheedge • Emission of thermal H/D atoms • Coldcomponentsof CII Zeeman multiplet • Overlappedcomponentsof Stark effectspectra • IntensityofMSE (MotionalStark Effect)multipletas a functionofobservation angle θ relative tothedirectionofelectricfield: ICAMDATA-2012, NIST, Gaithersburg

  8. Linear Stark effectfortheexcitedstates • Hamiltonianis diagonal in parabolicquantumnumbers • Sphericalsymmetryoftheatomisreplacedbythe axial symmetryaroundthedirectionofelectricfield • Calculationsofthelineintensities, Schrödinger E(1926) n k |m| 3 2 0 3 1 1 3 0 0 3-1 1 3-2 0 z „Good“ quantumnumbers: n=n1+n2+|m|+1, n1, n2 >0 (nkm) k=n1-n2 – electricquantumnumber m – z-projectionofmagneticmoment: n=3 σ0 π4 2 1 0 2 0 1 2 -1 0 n=2 1/2 σ π Example: ; /0=0.353

  9. Problems withlineintensities Niisthepopulationofthestatei, Aij-istheradiative rate, 1/s. • Statistical assumption: W. Mandl et al. PPCF 35 1373(1993) • Statistical lineintensitiesare not confirmedat JET andotherdevices • Plasma codesarebased on thestatisticalassumptionforthe beam excitedstates (n=2, n=3,.. ) Numberofevents /0 ICAMDATA-2012, NIST, Gaithersburg

  10. Major physical processes • Radiative decays • Well known (Bethe & Salpeter) • Field-induced ionization strong for high n’s • Electron-impact processes • Too high energies => small cross sections • Proton-impact processes • The strongest but… Problem: no cross sections/rate coefficients for transitions between parabolic states ICAMDATA-2012, NIST, Gaithersburg

  11. Cross sections in parabolicstates parabolicstatesnikimi θ nilimi– sphericalstates θ=π/2 for MSE • Calculationsincludetwotransformationsofwavefunctions • Rotation ofthecollisional (z‘) frame on the angle θtomatchzframeEdmonds A R 1957 Angular Momentum in Quantum Mechanics (Princeton, NJ: Princeton University Press) • Transformation betweenthesphericalandparabolicstates in the same frame zLandau L D and Lifshitz E M 1976 Quantum Mechanics: Non-Relativistic Theory ICAMDATA-2012, NIST, Gaithersburg

  12. Calculationofthecrosssections in parabolicstates • The expressionforthecrosssectioncanbewrittenas: • Density-matrix elements coherenceterms (off-diagonal elements) crosssections(diagonal elemens) ICAMDATA-2012, NIST, Gaithersburg

  13. Calculationofthecrosssections in parabolicstates (n=3) • Close-couplingcalculations • Glauber approximation • Eikonal approximation • Born approximation ICAMDATA-2012, NIST, Gaithersburg

  14. Influenceoftheorientation on thecrosssections • Energyisvaried in radial direction : 20…200 keV/u • Polar angle isthe angle betweenthefielddirectionandtheprojectile. (MSE–/2) (3,1,1) ? • Why do weneedthe angular dependenceif Cross sectiondepends on therelative velocitybetween beam andplasmaparticles. relative velocity - F • The formulasfor rate coefficients beam-Maxwellianplasma must includethe angular dependence. π/2 Beam direction ICAMDATA-2012, NIST, Gaithersburg

  15. Effectoftheorientation on the Hα Stark multipletemission F statisticalcalculations θ v • The strongestdeviationtothestatisticalcaseisobservedfortheconditionsof Stark effect • Increaseofπanddropofσcomponentsas a functionof angle θisobserved ICAMDATA-2012, NIST, Gaithersburg

  16. Lines ratioof Ha Stark multiplet Statistics: Collisions >>Radiation n=3 Δn=0 Collisions Radiation n=1 O. Marchuk et al. JPB 43 011002 (2010) /theoreticalresults;dashed- Glauber approximation solid- close-coupling (AOCC) + Glauber approximation/ E. Delabieet al. PPCF 52 125008 (2010) /new experimental data/ ICAMDATA-2012, NIST, Gaithersburg

  17. Calculations in strong magneticfield Plasma parameters: Magneticfield- 5T Plasma temperature 20 keVBeam energy: solid line – 500 keV/udashedline – 100 keV/u • The non-statisticalpopulationsinfluencethe Stark effectspectra→Reductionofσ -linesemission ICAMDATA-2012, NIST, Gaithersburg

  18. Populationsofparabolic Stark levels Beam energy 50 keV/u Plasma density 3·1013 cm-3 Magneticfieldis 3 T Field ionizationisexcluded Field ionizationisincluded ICAMDATA-2012, NIST, Gaithersburg

  19. Deviation from statistical distribution Does not reach statistical limit, primarily due to collisional ionization ICAMDATA-2012, NIST, Gaithersburg O Marchuk, Yu. Ralchenkoand D R SchultzPPCF 54 095010 (2012)

  20. Summary and Outlook • The experimental beam-emission spectrademonstrate a significantdeviationfortheσ- andπ- linesratiosforthe Hαlinefromthestatisticalvalues • CRM modelin parabolicstatescompletelyresolvedupto n=10 takingintoaccountfieldionizationisdevelopedwithoutanyassumption on thestatisticalequilibrium • Densitymatrixelementsfor heavy particlescollisionsplay in thismodelthemajorrole • The theoreticaldataare still extremelyrare ICAMDATA-2012, NIST, Gaithersburg

  21. The comparisonwiththe experimental data in the Glauber and AOCC demonstrates a verygoodagreementwith JET data. • The populationsoftheexcitedlevelsofthe beam do not followthestatisticalassumption • The reductionoftheσ- totheπ- components in theemissionofthespectrallinesisobserved. • Comparisonofthesimulationswithexperimental datafromotherfusiondevicesisnowongoing ICAMDATA-2012, NIST, Gaithersburg

  22. Reductionof beam-emission rate • Measurementsof CXRS impuritylinesat ITER: • Calculations • blackline – presentmodel • blueline – presentmodelwith infinite collisional rate withinΔn=0 transitions • redline – statisticalmodelO. Marchuk et al. Rev. Sci. Instrum. 79 10F532 (2008)* *- discussion on agreementbetweenstatisticalmodels,Delabie E. et al., PPCF 52 125008 (2010)

  23. Reductionofthe beam emission rate coefficients • Observation oflong-standing discrepancy on theorderof 20-30% betweenthemeasured (BES) andcalculateddensityof hydrogen beam in theplasmausingstatisticalmodels • The non-statisticalsimulationsdemonstrate a reductionofthe beam emission rate relative tothestatisticalmodel on theorderof 15-30% atlowand intermediate density. E=100 keV/u T=3 keV

  24. Calculationofthecrosssections in parabolicstates (n=2) s-p s-p blue - AOCC (presentresults) green - Glauber approximation (presentresults) dashed - Born approximation orange - CCC Schöller O et al. J. Phys B.: At. Mol. Opt. Phys. 19 2505 (1986) red – eikonalapproximation, Rodriguez VD andMiraglia JE J. Phys. B: At. Mol. Opt. Phys. 1992 25 2037 black - AOCC (presentresults) green – Glauber approximation (presentresults) dashed - Born approximation blue - SAOCC Winter TG, Phys. Rev. A 2009 80 032701 orange - SAOCC Shakeshaft R Phys. Rev. A 1976 18 1930 red – eikonalapproximation, Rodriguez VD andMiraglia JE J. Phys. B: At. Mol. Opt. Phys. 1992 25 2037 ICAMDATA-2012, NIST, Gaithersburg

More Related