120 likes | 295 Views
Efficient and Secure Certificateless Authentication and Key Agreement Protocol for Hybrid P2P Network. Authors: Z. B. Xu and Z. W. Li Source: The 2nd IEEE International Conference on Information Management and Engineering (ICIME), pp. 272-276, 2010 Speaker: Shu-Fen Chiou ( 邱淑芬 ). 1. Alice.
E N D
Efficient and Secure Certificateless Authentication and Key Agreement Protocol for Hybrid P2P Network Authors: Z. B. Xu and Z. W. Li Source: The 2nd IEEE International Conference on Information Management and Engineering (ICIME), pp. 272-276, 2010 Speaker: Shu-Fen Chiou (邱淑芬) 1
Alice Bob Introduction Key Generation Center (KDC) Certificate CB Certificate CA Mutual authentication with certificates • Certificateless Public Key Cryptography
CL-PKC (Certificateless Public Key Cryptography) Based on ECC Key Generation Center Master-key: s KGC public key: P0=sP Partial private key DA = sQA Where QA=H1(IDA) Partial private key DB = sQB Where QB=H1(IDB) Alice Bob Private key SA = <DA,xA> Private key SB = <DB,xB> Public key PA = xAP Public key PB = xBP 3
Hybrid P2P network In different domain In the same domain
Requirements • Certificateless • Implicit key authentication • Perfect forward secrecy • Known-key secrecy • Key-compromise impersonation • Unknown key-share resilience • Known session-specific temporary information security • No key control 5
Proposed scheme • In the same domain 6
b P0=sP DA = sQA DB = sQB K1=KA1=e(QB, P0)a =e(QB, P)sa =e(sQB, aP) =e(DB, TA)=KB1 K2=KA2=e(DA, TB) =e(sQA, bP) =e(QA, P)sb =e(QA, P0)b=KB2 K3=KA3=xA-2MB =xA-2xB-1PA =xA-1xB-1P =(xA-1 .xBP).xB-1xB-1 =xB-2MA=KB3 K4=KA4=aTB=abP=bTA=KB4 K5=KA5=aPB=axBP=xBTA=KB5 7 K6=KA6=xATB=xAbP=bPA=KB6
Proposed scheme P2=s2P DB = s2QB QB=H1(IDB) SB = <DB,xB> PB = xBP TB=bP MB=xb-1PA • Across the domain KB1=e(DB, TA) =e(s2QB, aP)=e(QB, P)s2a KB2=e(QA, P1)b=e(QA, P)s1b TA, MA TB, MB K1’=KA1=KB1=e(QB, P)s2a K2’=KA2=KB2=e(QA, P)s1b SK=KAB=KBA =H2(K1’||K2’||K3||K4|| K5||K6||TA||TB) P1=s1P DA = s1QA QA=H1(IDA) SA = <DA,xA> PA = xAP TA=aP MA=xA-1PB Alice KA1=e(QB, P2)a=e(QB, P)s2a KA2=e(DA, TB)=e(s1QA, bP)=e(QA, P)s1b
Analysis KA5=aPB=axBP=xBTA=KB5 • Implicit key authentication • Eve personate Bob: Eve computes TE=eP and ME=XE-1PA, Eve cannot compute KA5 or KB5. (DLP problem) • Perfect forward secrecy • Eve knows SA, SB, and s. But he needs to solve abP. (CDH problem) • Known-key secrecy • Each run, a, b are random and secret. Even if session has been compromised, Eve cannot compute the past or future session keys. 9
Analysis KA3=xA-2MB =xA-2xB-1PA =xA-1xB-1P =(xA-1 .xBP).xB-1xB-1 =xB-2MA=KB3 • Key-compromise impersonation • Eve replace the Bob’s public key PB=xeP, Eve cannot compute KA1 or KB1. • Eveknows s, but he cannotgenerate KA5 or KB5. • Unknown key-share resilience • Including the identity information, the Eve cannot ask Alice to share a session key to him, while Alice thinks that Eve is Bob. • Known session-specific temporary information security • Eve get the ephemeral keys of Alice and Bob. He cannot compute the partial session key K3. • No key control • Since a result of using a randomly selected ephemeral key in generating the common session key, neither peer can decide the final key.
Comment • Reduce the keys (K1-K6) with session key. SK=KAB=KBA =H2(K1||K2||K3||K4||K5||K6||TA||TB) SK=KAB=KBA =H2(K1||K2||TA||TB)
Computational Problems • Discrete Logarith problem (DLP)Given <g,q>, find an element a, such that ga = q • EC Discrete Logarithm problemGiven <P,Q>, find an element a, such that aP = Q • EC Computational Diffie-Hellman (CDH) problemGiven <P,aP,bP>, compute abP • Bilinear Diffie-Hellman (BDH) problemGiven <P,aP,bP,cP>, compute ê(P,P)abc • DLP > CDHP > BDHPexample: ê(abP,cP) = ê(P,cP)ab = ê(P,P)abc