390 likes | 436 Views
Chapter 4. λ. 2λ. 0. 1. 2. μ. 2μ. Non-nearest neighbor MC’s. Example. μ. Erlang Distribution. r = 1. 2μ. 2μ. Erlang Distribution. r = 2. rμ. rμ. rμ. 1. 2. r. r-stage Erlang Distribution. b(x). r = 1. 2. x. b(x). r = ∞. r = 1. μe -μ. 2. x. λ. departures. rμ.
E N D
λ 2λ 0 1 2 μ 2μ Non-nearest neighbor MC’s • Example
μ Erlang Distribution r = 1
2μ 2μ Erlang Distribution r = 2
rμ rμ rμ 1 2 r r-stage Erlang Distribution
b(x) r = 1 2 x b(x) r = ∞ r = 1 μe-μ 2 x
λ departures rμ rμ rμ 1 2 r Queue λ λ λ 0, 0 1, 1 2, 1 3, 1 γμ γμ λ 1, 2 2, 2 γμ γμ γμ γμ γμ λ 1, r 2, r 3, r M/Er/1 • (k, i) stage of service customer is in # in system
k-1, i γμ k-1, i λ k-1, i λ λ λ k-1, i λ λ λ λ λ 0 1 2 r-1 r r+1 r+2 γμ k-1, i rμ rμ rμ rμ rμ rμ rμ rμ λ λ λ λ λ λ j-r j-1 j j+1 j+r rμ rμ rμ rμ rμ rμ rμ rμ
departures μ rλ rλ rλ 1 2 r Queue Arrival box rλ rλ rλ rλ rλ rλ rλ 0 1 2 r-1 r r+1 rλ rλ rλ rλ rλ rλ rλ rλ μ μ μ μ μ μ j-r j-1 j j+1 j+r μ μ μ μ μ μ μ μ Er/M/1 二維 or 一維: j = stages of arrival completed by all customers in system plus 〃 all customers in arrival box
(r+1) roots 中有一個根 at Z=1 Im Z=1 Re
λ λ λ λ λ λ λ 0 1 2 r-1 r r+1 r+2 μ μ μ μ μ μ μ μ Bulk Arrival System • M/M/1 Bulk Arrival • Bulk size = r • 與 M/Er/1 比較, 把 M/Er/1 中的 • rμ 改成 μ • ρ 改成
λ λ λ λ λ λ λ 0 1 2 r-1 r r+1 μ μ μ μ μ μ 註: Bulk Service • M/M/1 Bulk Service • Bulk size = r • 與 Er/M/1 比較, 把 Er/M/1 中的 • rλ 改成 λ • ρ 改成
rgk rgk-1 rg2 rg2 rgk-2 rg1 rg1 rg1 rg1 0 1 2 k-2 k-1 k k+1 k+1 μ μ μ μ μ μ μ μ μ Bulk Arrival System • M/M/1 Bulk Arrival • Bulk size = random • gk = P[Bulk size = k] • 與 M/M/1 Bulk Arrival, bulk size = k 比較
λ λ λ λ λ λ λ 0 1 2 r-1 r r+1 μ μ μ μ μ μ Bulk Service System • M/M/1 Bulk Service • Bulk size = r • 與 Er/M/1 比較, 把 Er/M/1 中的 • rλ 改成 λ • ρ 改成
λ λ λ λ λ λ λ 0 1 2 r-1 r r+1 μ μ μ μ μ μ μ μ • Suppose less than r customers can be served immediately • (no need to wait until full bulk = r)
b(x) r = 1 rμ μr rμ μ1 rμ μ2 2 1 1 2 2 r r x r-stage Erlang dist (Er)
μ1 α1 μ2 α2 αR μR 2 2 Hyperexponential Dist (HR)
r1μ1 r1μ1 r1μ1 r1 α1 1 2 αk rkμk rkμk rkμk rk αR 1 2 rRμR rRμR rRμR service facilityone customer at one time rR 1 2 Series-Parallel Stage-Type device
β1 βr β2 μ1 μr μ2 1-β1 1-βr 1-β2 Coxian Stage-Type Device
Poisson ? Poisson Networks of Queues • Paul Burke(1954) • Burke’s Theorem: • The only(FCFS) queuing systems which give Poisson out for Poisson in is M/M/1/n
Cn-1 Cn Cn+1 Cn+2 λ Xn+1 departures Xn+2 Xn idle μ Server Queue Cn Cn+1 Cn+2 Wn Wn+1 Wn+2=0 Queue Cn Cn+1 Cn+2 • M/M/1:
Case 1: Case 2:
pλ p pλ λ λ λ 2 (1-p)λ 1-p (1-p)λ 1 4 3 Feed forward ??M/M/mi
j i rij • J.R.Jackson(1957) • = External arrival rate to node i (Poisson) • mi = Number of parallel servers in node i (Exponential) with mean service (1/μi) sec. • rij = P[node j next after node i] • P[leave network after service in node i] = • λi = Total traffic handled by node i (sum of external + internal arrivals)
p λ μ Poisson Poisson λ 1-p NOT Poisson
j i rij • Gordon and Newell(1967) • mi = # servers in node i (Exponential) with mean service (1/μi) sec. • rij = P[node j next after node i].
Bottlenecknode Closed Queuing Networks
terminal A K A B A B 1 1 0 0 1 SWAPPINGDEVICE 1 CPU B 不同 class of job have different probability to go