350 likes | 461 Views
Diffuse supernova neutrinos at underground laboratories. Cecilia Lunardini Arizona State University And RIKEN BNL Research Center. INT workshop “Long-Baseline Neutrino Physics and Astrophysics”. Motivations Current status The future: Detection potential What can we learn?
E N D
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline Neutrino Physics and Astrophysics”
Motivations • Current status • The future: • Detection potential • What can we learn? • Extras: what else? C. Lunardini, arXiv:1007.3252 (review)
Diffuse neutrinos from all SNe • Sum over the whole universe: Supernovae S. Ando and K. Sato, New J.Phys.6:170,2004.
Motivations Clip art from M. Vagins
Sooner and more • Faster progress • Alternative to a galactic SN! • ~20 events/yr/Mt everyday physics! • New science • What’s typical ? • New/rare SN types • Cosmological Sne • Physics in the 10-100 MeV window?
The “ingredients” Cosmological rate of supernovae Neutrino flux at production + Propagation effects: Oscillations Redshift …. Cosmology
From Star Formation Rate From SN data Supernova rate RSN(z) ~RSN(0) (1+z)β , z<1 normalization uncertain This work: β=3.28, RSN(0) = 10-4 Mpc-3 yr-1 Beacom & Hopkins, astro-ph/0601463
Original spectra • Models: • Lawrence Livermore • Thompson, Burrows, Pinto (Arizona) • Keil, Raffelt, Janka (Garching) • 3 1053 ergs , equipartitioned between 6 species Keil,, Raffelt,Janka, 2003 Astrophys. J. 590 971 x=μ, τ
Flavor oscillations • Self-interaction + MSW (H) + MSW (L) • Spectral swap • Depend on θ13 and hierarchy • Normal (inverted): ∆m231>0 (∆m231<0) Duan, Fuller, Quian, PRD 74, 2006 Jumping probability, PH C.L. & A. Y. Smirnov, JCAP 0306, 2003
p= 0 – 0.32 , p = 0 – 0.68 Higher energy tail Chakraborty et al., hep-ph/08053131
DSNnF spectrum Exponential decay with E Neutrinos, p=0.32 Neutrinos, p=0 LL TBP KRJ C.L., in preparation
Upper limits and backgrounds SuperKamiokande (Malek et al., PRL, 2003): Energy window Red dashed: Homestake Solid, grey: Kamioka
anti-e flux: predictions C.L., Astropart.Phys.26:190-201,2006
Water Background/signal ~ 5 -6 (at Kamioka) Fogli et al., JCAP 0504, 002, 2005 Energy window Bulk of events missed Large statistics: ~ 1-2 events/MeV/yr
GADZOOKS Background/signal<1 Invisible muons reduced to 1/5 Beacom & Vagins, PRL93, 2004 Energy window Larger energy window: Bulk of events captured! Modest statistics… Scaling to Mt??
New! LAr Background/signal ~ 0.2-0.3 Energy window Bulk of events may be captured! Statistics modest: ~0.2 events/yr/MeV Scaling? C.L., in preparation
Water+Gd: effective spectrum Normalized to 150 events, b=3.28 C.L., Phys.Rev.D75:073022,2007
0.1 Mt yr A step beyond SN1987A! • Test SN codes of spectra formation, some oscillation effects, etc. • 0.1 Mt yr : • Tests part of parameter space • May not reach SN1987A region Yuksel, Ando and Beacom, Phys.Rev.C74:015803,2006
Chance to test Normalized to 150 events r ~ 0.6 – 0.9 C.L., Phys.Rev.D75:073022,2007
New SN types: failed SNe Liebendörfer et al., ApJS, 150, 263, K. Sumiyoshi et al., PRL97, 091101 (2006), T. Fischer et al., (2008), 0809.5129, K. Nakazato et al., PRD78, 083014 (2008) • M > 40 Msun, 9-22% of all collapses • Direct BH-forming collapse (no explosion): • Higher energies: E0 ~ 20 – 24 MeV • For all flavors • Due to rapid contraction of protoneutron star before BH formation • Electron flavors especially luminous • (e- and e+ captures)
Shen et al. (S) EoS nue Anti-nue BH NS nux • Progenitor: M=40 Msun, from Woosley & Weaver, 1995 • “stiffer” eq. of state (EoS) more energetic neutrinos K. Nakazato et al., PRD78, 083014 (2008)
Number of events: water.. • Best case scenario: 22% failed, S EoS Total Normal Failed C.L., arXiv:0901.0568, Phys. Rev. Lett., 2009, J. G. Keehn and C.L., in preparation
LAr • Bulk of events from failed SNe captured • Failed SN at least a 10% effect in energy window Total Normal Failed J. Keehn & C.L., in preparation
Reducing uncertainties • Precise SN rates coming soon from astronomy • Neutrino uncertainties more serious • SN modeling? • Galactic SN? http://snap.lbl.gov/ http://www.jwst.nasa.gov/,
Extras What else is there?
Neutrinos from solar flares? • LSD: 27 flares examined in 3 years • Mt-size advocated for detection Aglietta et al., 1990 Miroshnichenko et al., Space Science Reviews 91: 615–715, 2000 Flare, best Relic SN, 1 year Flare,conservative Erofeeva et al., 1988; Bahcall PRL 1988 Kocharov et al., 1990, Fargion et al., 2008
Solar antineutrinos • Spin-flavor oscillations • νe anti-νe Rashba & Raffelt, Phys.Atom.Nucl.73:609-613,2010
Neutrinos from relic decay/annihilation • χ ν + anti-ν • χ+ χ ν + anti-ν Yuksel & Kistler, PRD, 2007 Gamma rays Palomares Ruiz & Pascoli, Phys.Rev.D77, 2008 Palomares Ruiz, Phys.Lett.B ,2008
MeV Dark Matter absorption Kile and Soni, Phys.Rev.D80:115017,2009
Summary • DSNnF may be seen with few years running! • 100 kt LAr : O(10) events • 0.4 Mt water : O(102) events • New science: • Typical neutrino emission • Sensitive to failed Sne • Other physics in energy window? • To advance further: • Resolve parameter degeneracies (theory) • reduce background at low E