1 / 35

Diffuse supernova neutrinos at underground laboratories

Diffuse supernova neutrinos at underground laboratories. Cecilia Lunardini Arizona State University And RIKEN BNL Research Center. INT workshop “Long-Baseline Neutrino Physics and Astrophysics”. Motivations Current status The future: Detection potential What can we learn?

garret
Download Presentation

Diffuse supernova neutrinos at underground laboratories

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline Neutrino Physics and Astrophysics”

  2. Motivations • Current status • The future: • Detection potential • What can we learn? • Extras: what else? C. Lunardini, arXiv:1007.3252 (review)

  3. Diffuse neutrinos from all SNe • Sum over the whole universe: Supernovae S. Ando and K. Sato, New J.Phys.6:170,2004.

  4. Motivations Clip art from M. Vagins

  5. Sooner and more • Faster progress • Alternative to a galactic SN! • ~20 events/yr/Mt  everyday physics! • New science • What’s typical ? • New/rare SN types • Cosmological Sne • Physics in the 10-100 MeV window?

  6. Current status

  7. The “ingredients” Cosmological rate of supernovae Neutrino flux at production + Propagation effects: Oscillations Redshift …. Cosmology

  8. From Star Formation Rate From SN data Supernova rate RSN(z) ~RSN(0) (1+z)β , z<1 normalization uncertain This work: β=3.28, RSN(0) = 10-4 Mpc-3 yr-1 Beacom & Hopkins, astro-ph/0601463

  9. Original spectra • Models: • Lawrence Livermore • Thompson, Burrows, Pinto (Arizona) • Keil, Raffelt, Janka (Garching) • 3 1053 ergs , equipartitioned between 6 species Keil,, Raffelt,Janka, 2003 Astrophys. J. 590 971 x=μ, τ

  10. Flavor oscillations • Self-interaction + MSW (H) + MSW (L) • Spectral swap • Depend on θ13 and hierarchy • Normal (inverted): ∆m231>0 (∆m231<0) Duan, Fuller, Quian, PRD 74, 2006 Jumping probability, PH C.L. & A. Y. Smirnov, JCAP 0306, 2003

  11. p= 0 – 0.32 , p = 0 – 0.68 Higher energy tail Chakraborty et al., hep-ph/08053131

  12. DSNnF spectrum Exponential decay with E Neutrinos, p=0.32 Neutrinos, p=0 LL TBP KRJ C.L., in preparation

  13. Upper limits and backgrounds SuperKamiokande (Malek et al., PRL, 2003): Energy window Red dashed: Homestake Solid, grey: Kamioka

  14. anti-e flux: predictions C.L., Astropart.Phys.26:190-201,2006

  15. The future: detection potential

  16. Detection

  17. Water Background/signal ~ 5 -6 (at Kamioka) Fogli et al., JCAP 0504, 002, 2005 Energy window Bulk of events missed Large statistics: ~ 1-2 events/MeV/yr

  18. GADZOOKS Background/signal<1 Invisible muons reduced to 1/5 Beacom & Vagins, PRL93, 2004 Energy window Larger energy window: Bulk of events captured! Modest statistics… Scaling to Mt??

  19. New! LAr Background/signal ~ 0.2-0.3 Energy window Bulk of events may be captured! Statistics modest: ~0.2 events/yr/MeV Scaling? C.L., in preparation

  20. What can we learn?

  21. Water+Gd: effective spectrum Normalized to 150 events, b=3.28 C.L., Phys.Rev.D75:073022,2007

  22. 0.1 Mt yr A step beyond SN1987A! • Test SN codes of spectra formation, some oscillation effects, etc. • 0.1 Mt yr : • Tests part of parameter space • May not reach SN1987A region Yuksel, Ando and Beacom, Phys.Rev.C74:015803,2006

  23. Chance to test  Normalized to 150 events r ~ 0.6 – 0.9 C.L., Phys.Rev.D75:073022,2007

  24. New SN types: failed SNe Liebendörfer et al., ApJS, 150, 263, K. Sumiyoshi et al., PRL97, 091101 (2006), T. Fischer et al., (2008), 0809.5129, K. Nakazato et al., PRD78, 083014 (2008) • M > 40 Msun, 9-22% of all collapses • Direct BH-forming collapse (no explosion): • Higher energies: E0 ~ 20 – 24 MeV • For all flavors • Due to rapid contraction of protoneutron star before BH formation • Electron flavors especially luminous • (e- and e+ captures)

  25. Shen et al. (S) EoS nue Anti-nue BH NS nux • Progenitor: M=40 Msun, from Woosley & Weaver, 1995 • “stiffer” eq. of state (EoS)  more energetic neutrinos K. Nakazato et al., PRD78, 083014 (2008)

  26. Number of events: water.. • Best case scenario: 22% failed, S EoS Total Normal Failed C.L., arXiv:0901.0568, Phys. Rev. Lett., 2009, J. G. Keehn and C.L., in preparation

  27. LAr • Bulk of events from failed SNe captured • Failed SN at least a 10% effect in energy window Total Normal Failed J. Keehn & C.L., in preparation

  28. Reducing uncertainties • Precise SN rates coming soon from astronomy • Neutrino uncertainties more serious • SN modeling? • Galactic SN? http://snap.lbl.gov/ http://www.jwst.nasa.gov/,

  29. C.L., Astropart.Phys.26:190-201,2006

  30. Extras What else is there?

  31. Neutrinos from solar flares? • LSD: 27 flares examined in 3 years • Mt-size advocated for detection Aglietta et al., 1990 Miroshnichenko et al., Space Science Reviews 91: 615–715, 2000 Flare, best Relic SN, 1 year Flare,conservative Erofeeva et al., 1988; Bahcall PRL 1988 Kocharov et al., 1990, Fargion et al., 2008

  32. Solar antineutrinos • Spin-flavor oscillations • νe anti-νe Rashba & Raffelt, Phys.Atom.Nucl.73:609-613,2010

  33. Neutrinos from relic decay/annihilation • χ ν + anti-ν • χ+ χ ν + anti-ν Yuksel & Kistler, PRD, 2007 Gamma rays Palomares Ruiz & Pascoli, Phys.Rev.D77, 2008 Palomares Ruiz, Phys.Lett.B ,2008

  34. MeV Dark Matter absorption Kile and Soni, Phys.Rev.D80:115017,2009

  35. Summary • DSNnF may be seen with few years running! • 100 kt LAr : O(10) events • 0.4 Mt water : O(102) events • New science: • Typical neutrino emission • Sensitive to failed Sne • Other physics in energy window? • To advance further: • Resolve parameter degeneracies (theory) • reduce background at low E

More Related