1 / 34

Functional and structural imaging in neurodegenerative diseases

Functional and structural imaging in neurodegenerative diseases. Caroline Sage Promotor: Prof. Dr. Stefan Sunaert Co-promotor: Prof. Dr. Wim Robberecht. Overview. Introduction Aims and methods Results Future directions. Overview. Introduction Aims and methods Results Future directions.

garson
Download Presentation

Functional and structural imaging in neurodegenerative diseases

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Functional and structural imaging in neurodegenerative diseases Caroline Sage Promotor: Prof. Dr. Stefan Sunaert Co-promotor: Prof. Dr. Wim Robberecht

  2. Overview • Introduction • Aims and methods • Results • Future directions

  3. Overview • Introduction • Aims and methods • Results • Future directions

  4. Introduction • Neurodegenerative diseases • Alzheimer’s disease • Parkinson’s disease • Multiple sclerosis • Huntington’s disease • Pick’s disease • Prion diseases • Amyotrophic lateral sclerosis

  5. Introduction • Amyotrophic Lateral Sclerosis (ALS) • Cause is poorly understood • 5-10% familial ALS (fALS) • 90-95% sporadic ALS (sALS) • Loss of motor neurons (MN) • Upper MN signs • Lower MN signs • Spectrum disease?

  6. Introduction • Research in ALS • Cell cultures & molecular research • Neuronal cells: motor neurons • Non-neuronal cells: astrocytes, oligodendrocytes, microglia • Agents for survival and neuronal protection (VEGF,...) • Animal studies • Mutant SOD1 mice and rats: overexpression of mutant SOD1 • Pathological mechanisms: glutamate excitotoxicity, impaired axonal transport,... • Rescue experiments • Human studies • Ex-vivo: autopsy of brain and/or spinal cord • Tissue studies: blood analysis, CSF analysis • In-vivo: PET, TMS, 1H-MRS, MRI Pubmed search dd 26/06/2007: 4568 scientific publications, in English, over the last 10 years!

  7. Introduction • Magnetic resonance imaging (MRI) in ALS • Conventional MRI • PD/T2w/FLAIR: non specific markers (Cheung et al., 1995; Hecht et al., 2001; Hecht et al., 2002) • T1w: loss of GM volume and to a lesser degree also loss of WM volume, especially in patients with cognitive deficits (Ellis et al., 1999; Abrahams et al., 2005; Grosskreutz et al., 2006) • Functional MRI (fMRI) • Motor tasks: recruitment of motor and non-motor areas in ALS patients (Konrad et al., 2002; Schoenfeld et al., 2005) • Cognitive tasks: cognitive deficits in ALS patients, especially in ALS patients with concomittant frontotemporal lobe dementia (Abrahams et al., 2006) • Diffusion tensor imaging (DTI) • Impairment of the corticospinal tract: reduction of FA and/or increase of Dav (Ellis et al., 2001; Toosy et al., 2003; Graham et al., 2004; Hong et al., 2004; Sach et al., 2004; Abe et al., 2005)

  8. Overview • Introduction • Aims and methods • Results • Future directions

  9. Aims • Research questions • Are there structural MRI changes in the brain of ALS patients? • Are there functional MRI changes in the brain of ALS patients? • Search for radiological correlates of structural and/or functional deficits in ALS patients by comparing ALS patients with a group of healthy age- and sex-matched controls • Design scan protocol of different tests for use in clinical settings • Improve diagnosis • Provide prognosis • Monitor newly developed therapies

  10. Neuronal function Cerebral vasoreactivity Cerebral vasculature/perfusion WM architecture fMRI vasoreactivity (VASC) fMRI motor tasks Dynamic contrast-enhanced T2*w imaging (PWI) Diffusion tensor imaging (DTI)

  11. Overview • Introduction • Aims and methods • Results • Future directions

  12. DTI

  13. DTI - introduction • DTI • Diffusion Tensor Imaging • Assess Brownian motion of water molecules isotropy free diffusion restricted diffusion anisotropy

  14. DTI - introduction • Data acquisition • Apply magnetic field gradients in multiple non-collinear directions during MRI data acquisition -> ° signal loss due to diffusion (Stejskal and Tanner, 1965) • Determine diffusion coefficient D in each voxel by varying b-value • In case of highly ordered structures: model diffusion by estimation of diffusion tensor D using multivariate fitting S = S0 e-bD

  15. Dxx Dxy Dxz Dyx Dyy Dyz Dzx Dzy Dzz λ1 0 0 0 λ2 0 0 0 λ3 l1 l2 l3 DTI - introduction non diffusion-weighted image (b0) + ≥ 6 diffusion weighted images

  16. 3((l1-l2)2+ (l2-l3)2+ (l1-l3)2) 2(l12+ l22+ l32 ) l1 + l2 + l3 3 DTI - introduction • Derive quantitative diffusion parameters • Dav : amount of directionally averaged diffusion (in mm²/s) • FA : scalar measure of amount of anisotropy (0 = isotropic; 1 = diffusion in 1 specific direction only) Dav = FA =

  17. DTI - introduction

  18. DTI - introduction Mori et al., 1999

  19. DTI - aim • Study white matter integrity in the brain of ALS patients by means of DT-MRI • Fibertracking of CST • Spatial interpolation of tract data • Voxel-based analysis of whole brain white matter • Correlation of disease severity with diffusion parameters • Quantitative comparison of diffusion parameters between ALS patients and controls • FA • Dav

  20. DTI - material & methods • Subjects • Patients (PA, n = 28) • Sex: 14 female, 14 male • Age = 58.9 +/- 11.8 years • ALS-FRS= 39.7 +/- 6.3 • Controls (CT, n = 26) • Age = 53.7 +/- 11.8years • Sex: 15 female, 11 male • Imaging (3T) • DTI • 16 directions; b= 800 mm²/s; 2mm isotropic resolution • 3D-TFE

  21. DTI - fibertracking • Check integrity of corticospinal tract (CST) • Motor part -> precentral gyrus • Sensory part -> postcentral gyrus • Reconstruct ‘mean’ CST + separate parts • Compare mean FA/Dav values between patients and controls

  22. * * * * * * Precentral * * Postcentral n.s. * n.s. n.s. DTI - Fibertracking

  23. DTI – interpolation of tract data • Assess local variation of FA/Dav values over course of CST • Interpolation of tract data to spatially ‘normalize’ tract data • Compare mean FA/Dav values between patients and controls

  24. z DTI - Interpolation of tract data Interpolation of individual data in z-direction Measure FA/Dav over z-direction of interpolated data Select part of CST between pons and subcortical WM Tract data $ $ 76 « new » z-coordinates

  25. * * FA * * Dav

  26. DTI – voxel-based analysis • Assess WM integrity of whole brain • Normalize FA/Dav maps • Smooth warped maps • Voxel-by-voxel comparison of FA/Dav values in whole brain

  27. X 28 ALS patients X 28 ALS patients X 26 controls X 26 controls t-test t-test T-value of test FA in PA < CT T-value of test Dav in PA > CT DTI – voxel-based analysis Test in each voxel

  28. CST Orbitofrontal Prefrontal Hippocampal formations Insular regions Parietal regions WM underneath PMC WM underneath SMA p<0.05, FWE corrected DTI – voxel-based analysis

  29. DTI - correlation analysis • Study effect of patients’ scores on ALS-FRS on FA/Dav • ALS-FRS: questionnaire of 12 questions to assess « functional integrity » of patients • Questions relate to day-to-day activities • max. score = 48 • Add individual score as a covariate in a voxel-based correlation analysis

  30. A DTI - correlation analysis CST_ALSFRS_FA_positive Frontal_ALSFRS_FA_positive

  31. DTI - summary • Significant impairment of CST in ALS patients • Limited to the precentral part of the CST • Mostly in cranial parts of the CST • White matter impairment is not limited to the motor system • Areas involved in voluntary motor control • Proprioceptive areas • Frontal/temporal/hippocampal structures • Strong correlation of ALS-FRS and FA • In CST • Especially in orbitofrontal cortex This study provides support for the view of ALS as being a multisystem degenerative disease, in which abnormalities of extra-motor play an important role in the in vivo physiopathology Sage et al., 2007

  32. Overview • Introduction • Aims and methods • Results • Future directions

  33. Future directions - DTI • Non-rigid coregistration of DTI data in cooperation with UZ Antwerpen (W. Van Hecke) • To reference • To atlas • Tract-based spatial statistics (TBSS, S. Smith et al., 2006)

  34. Thank you for your attention Questions?

More Related