110 likes | 208 Views
Division Rhythm 1. 3x 2 2. 4 – 3x 3. 5a – 3 4. -3b + 1 5. 4ab – 3 6. 2a + 3b 7. –x 2 y 4 + 3x. Homework Review. 8. -5x 3 + 4x 2 -7x 9. 2a 2 – 3a + 7 10. 2x 2 + xy -3y 2 11. -1 + 3xy - 8x 2 12. 3x 2 y 3 – xy + 2. Across 1. 12 3. 13 5. 4x 7. a 2 b 8. a 3 b 4 10. d 2 a 4 c 2
E N D
Division Rhythm 1. 3x2 2. 4 – 3x 3. 5a – 3 4. -3b + 1 5. 4ab – 3 6. 2a + 3b 7. –x2y4 + 3x Homework Review • 8. -5x3 + 4x2 -7x • 9. 2a2 – 3a + 7 • 10. 2x2 + xy -3y2 • 11. -1 + 3xy - 8x2 • 12. 3x2y3 – xy + 2
Across 1. 12 3. 13 5. 4x 7. a2b 8. a3b4 10. d2a4c2 12. 1 13. 9b 16. c2d 18. 27d3e2 Homework Review • Down • 2. 24 • 4. 3ab • 6. 4a3 • 7. a2b4c2 • 9. b4d2 • 11. 6x2 • 14. bc2d3 • 15. 32 • 17. de2
Homework Quiz • Find the quotient. • 1. • 2. • Find the GCF. • 3. 36; 48 • 4. 30x2y; 24x3 • 5. 8a3; 12a4
Warm-Up • Find the GCF • 9, 12 • 51x, 85x2 • 30x3, 45x2, 105x • Use the distributive property to simplify • 3x(4x + 9) • (-3)(2x3 + 5)
Section 10.8 Factoring Using a GCF SWBAT to factor a polynomials using a GCF
What does it mean to factor? • Factoring a polynomial means to rewrite the polynomial as a product • Ex: The factored form of 6 is 2∙3
Factoring Using a GCF • One way (and yes, you will learn the other ways) to factor a polynomial is by using the GCF
Factoring Using a GCF • Step 1: Identify the GCF of the terms • Step 2: Divide the GCF from the rest of the terms • Step 3: Rewrite as a product (Use parenthesis)
Example • Factor the polynomial below
Example • Factor the polynomial below
Example • Factor the polynomial below