1 / 21

Magnitudes

Proporciones. Esquema. Magnitudes. Razones. Proporción. Cuarta proporcional. Prop. directas. Prop. inversas. Prop. compuestas. Problemas. Problemas. Problemas. Los tantos por ciento. Problemas y cálculos rápidos.

garvey
Download Presentation

Magnitudes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Proporciones Esquema Magnitudes Razones Proporción Cuarta proporcional Prop. directas Prop. inversas Prop. compuestas Problemas Problemas Problemas Los tantos por ciento Problemas y cálculos rápidos Puedes avanzar con la flecha derecha o haciendo clic en la parte interesada

  2. Proporciones Definición • Magnitud. Se llama magnitud a todo lo que se pueda pesar, medir o contar. Arroz, tornillos, horas, euros, obreros ... • Razón. Es la relación entre dos magnitudes. Ejemplo: 3 kilos de arroz y 6 euros. 3------ 6 • Proporción. Es la igualdad de dos razones, siempre que al multiplicarlas en cruz den el mismo resultado. 3 6------ = ------ 6 12 ( 3 * 12 = 6 * 6 )

  3. Proporciones Cuarta proporcional La cuarta proporcional consiste en, conocidas tres magnitudes de una proporción, averiguar la cuarta magnitud. Ejemplo: 3 12----- = -----5 X Para averiguarla, se multiplica en cruz los valores conocidos y el resultado se divide por el valor que ha quedado solo, 60 ------ = 203 12 * 5 X = --------- ; 3 Sigue con ejercicios

  4. Proporciones Cuarta proporcional Ejercicios Recordamos que la cuarta proporcional consiste en, conocidas tres magnitudes de una proporción, averiguar la cuarta magnitud.

  5. Proporciones Método a seguir ante los problemas • Primer paso, planteamiento de las magnitudes: tornillosminutos 420 71.200 X Ejemplo: Una fábrica produce 420 tornillos en 7 minutos, ¿Cuánto tiempo tardará en producir 1.200 tornillos? • Segundo paso, cuarta proporcional: 420 1.200---------- = ---------- 7 X Tomamos la primera línea del planteamiento y decimos: 420 es a 7, como 1.200 es a X, ya de la segunda línea. 1.200 * 7X = ----------------- 420 • Tercer paso, resolvemos:

  6. Proporciones Problemas Proporciones directas Una proporción es directa cuando al aumentar una magnitud, también aumenta la otra; o cuando disminuye una, también disminuye la otra. Ejemplos: Para conocer si la proporción es directa nos planteamos en los problemas: a más horas de trabajo más jerseys y más tornillos necesitarán más minutos.

  7. Proporciones Problemas Proporciones inversas Una proporción es inversa cuando al aumentar el valor de una magnitud, disminuye la otra, o viceversa. Ejemplos: Para resolver la proporción inversa hay que pasarla antes a directa, para ello se han cambiado de lugar los factores de la magnitud completa.

  8. Proporciones Problemas Son proporciones compuestas las que tienen más de dos magnitudes. Proporciones compuestas

  9. Proporciones Todas las proporciones, antes de resolverlas, seplantean de forma directas: Si no son directas, por tener una magnitud inversa, se cambia ésta: obrerosmetros10 400 X 100 obrerosdías10 20 X 1 obrerosdías10 1 X 20 Si además son compuestas por tener más de dos magnitudes, primero las inversas se cambian y luego las magnitudes completas se multiplican en línea: obrerosdíasmetros 10 20 400 X 1 100 obrerosdíasmetros 10 1 400 X 20 100 Planteamiento final: 10 400 X 2000

  10. ¿Cómo conocer si una magnitud es directa o inversa? Proporciones Ejemplo: Un caño que arroja 12.000 litros de agua por hora llena un depósito en 8 horas. ¿Cuántos litros por hora debería arrojar para llenar en 6 horas un depósito cuatro veces mayor? Planteamiento de las magnitudes del problema: Litros/hora HorasDepósito 12.000 8 1 X 6 4 Comparamos cada magnitud completa que son las horas y el depósito con la incompleta que son litros/hora, cada una por separado: Decimos primero que 6 es menor que 8, luego es de de signo negativo.Luego decimos que para llenar el mismo depósito en menos horas, hará falta más caudal o más litros por hora, luego es de signo positivo.Lo que me indica que la magnitud horas es inversa al ser de distinto signo Litros/hora Horas 12.000 8 X 6 Decimos después que 4 es mayor que 1, luego es de de signo positivo.Luego decimos que para llenar 4 depósitos, hará falta más caudal o más litros por hora, luego es de signo positivo.Lo que me indica que la magnitud Depósito es directa al ser del mismo signo Litros/hora Depósito 12.000 1 X 4 Conclusión: Al comparar las magnitudes, por lógica debemos determinar si son del mismo signo para decir que es directa, o bien si son de signo contrario para decir que es inversa.

  11. Proporciones Resumen Directas Inversas Compuestas Se resuelven primero pasándola a directa multiplicando en línea las magnitudes y si son inversas, cambiando los valores de posición antes. Se resuelven pasándola a directa cambiando los valores de posición Se resuelven directamente Una proporción es directa cuando al aumentar una magnitud, también aumenta la otra; o cuando disminuye una, también disminuye la otra. Una proporción es inversa cuando al aumentar el valor de una magnitud, disminuye la otra, o viceversa. Una proporción es compuesta cuando tiene más de dos magnitudes.

  12. Proporciones Los tantos por ciento (%) Un tanto por ciento significa que de cada cien partes en que dividimos un total, tomamos la cantidad que se nos diga. Por ejemplo, si tengo 32%, significa que de cada cien partes se coge 32. Para trabajar con tantos por cientos, se procede de igual manera que en las proporciones directas, cuando dos columnas: % y la magnitud que se trabaje (metros, euros, kilogramos...) . En el primer renglón (línea), se apuntan las cifras totales; y en el segundo las partes. (Nota: en la parte superior izquierda siempre ponemos 100 debajo de %). % metros100 120X 32 Ejemplo delplanteamiento Sigue con problemas

  13. Proporciones Problemas Los tantos por ciento (%) Sigue con problemas

  14. Proporciones Problemas Los tantos por ciento (%) Planteamiento Proporción Resolución % kilos 100 16.00035 X 100 35--------- = ---------16.000 X 35 * 16.000X = ------------------ 100 Recordemos las proporciones directas

  15. Proporciones Ejemplo práctico Los tantos por ciento (%) En el año 2007, una pensión mensual de la Seguridad Social ha sido de 500 euros netos. En enero del mismo año tuvo una revalorización del 2%, respecto al año anterior. Este 2% fue calculado como previsión de incremento del IPC para este mismo año. Teniendo en cuenta que por R.D. se viene obligado a revisar dicho porcentaje según el incremento real del IPC de este año (interanual noviembre-noviembre), y que dicho porcentaje ha sido del 4,1%, resulta que, se debe recibir la diferencia como paga única y consolidar la nueva pensión mensual, de cara a la revalorización del próximo año 2008. Hay que sustituir el 2% por el 4.1% de lo cobrado en 2007, y hallar la diferencia para calcular la paga única.

  16. Proporciones Ejemplo práctico Los tantos por ciento (%) Consideraciones previas Cualquier porcentaje se puede expresar en forma de fracción o número decimal y, a su vez, cualquier número decimal o fracción se puede expresar en porcentaje. Para incrementar: El cálculo rápido se hace multiplicando la cantidad por un factor 1.x donde x=porcentaje/100. Para calcular un incremento del 4.1% de 100 haríamos 100*1.041=104.1 Para revertir: Si tenemos un número incrementado en un porcentaje y queremos revertir el cálculo podemos aplicar la forma inversa dividiendo por 1.x donde x=porcentaje/100.Para calcular la reversión del 2% de 100 haríamos 100/1.02=98.03

  17. Proporciones Ejemplo práctico Los tantos por ciento (%) ...sustituir el 2% por el 4.1% de lo cobrado en 2007 … (1) Revertir el 2% (Previsto para 2007)Si queremos revertir el 2% incrementado en la mensualidad de 2007, podemos aplicar la forma inversa dividiendo por el factor 1.02. Con el ejemplo seria 500/1.02=490.19 € Aplicar el 4.1% (Real para 2007)Para calcular un incremento del 4.1% de 490.19, multiplicamos la cantidad por el factor 1.041. Con el ejemplo seria 490.19*1.041=510.28 € (1) Revertir: Volver al valor que tuvo antes.

  18. Proporciones Ejemplo práctico Los tantos por ciento (%) … y hallar la diferencia para calcular la paga única. Cobrado mensualmente en 2007 …………… 500.00 € Se debió cobrar ………………………………….. 510.28 € Diferencia mensual ……………………………. 10.28 € Por 14 pagas al año (PAGA ÚNICA) …… 143.92 € Este ejemplo se hace con una mensualidad líquida. Se puede hacer igualmente con una mensualidad bruta y se aplicaría la retención que corresponda.

  19. Proporciones Resumen I Los tantos por ciento (%) Cálculos Datos Cálculos Datos

  20. Proporciones Resumen II y final Los tantos por ciento (%) Cálculos Datos Cálculos Datos El Bruto/Capital de un documento, puede ser también un número cualquiera de un total ó 100%El Saldo/Neto de un documento, puede ser la parte de un total cualquiera, descontado el %Los cálculos están simplificados para obtener resultados rápidos. Se entiende que en los exámenes hay que demostrarlos con fórmulas matemáticas, como ya se ha visto en el contenido de esta presentación.

  21. Proporciones Hemos visto las proporciones en matemáticas de los Apuntes de JAM Magnitudes Razones Proporción Cuarta proporcional Prop. directas Prop. inversas Prop. compuestas Problemas Problemas Problemas Los tantos por ciento Problemas y cálculos rápidos ¿Repetimos? Autor: jesus1056@yahoo.es

More Related