1 / 32

Cancer Metabolomics and Its Applications

Cancer Metabolomics and Its Applications. Leo L. Cheng Massachusetts General Hospital Harvard Medical School. Informatics for Cancer Diagnosis - Altered molecular biology. Genomics. Risk Predictability. Proteomics. Metabolo- mics. Pathology. Clinical Relevance.

gavivi
Download Presentation

Cancer Metabolomics and Its Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cancer Metabolomics and Its Applications Leo L. Cheng Massachusetts General Hospital Harvard Medical School L. L. Cheng

  2. Informatics for Cancer Diagnosis - Altered molecular biology Genomics Risk Predictability Proteomics Metabolo- mics Pathology Clinical Relevance L. L. Cheng

  3. HRMAS MRS - Tissue Samples (~10mg) - High Resolution Magic Angle Spinning L. L. Cheng

  4. w/o HRMAS w/ HRMAS HRMAS MRS x400 L. L. Cheng

  5. HRMAS MRS L. L. Cheng

  6. Peak Intensity PC Coefficient Principal Component Analysis - 199 samples from 82 prostatectomy cases. - Intensities of 36 most common and intensive peaks. Example: PC3 for Sample 2 = A-(c3,1*p1,2 +c3,2*p2,2 +c3,3*p3,2+ … +c3,36*p36,2) L. L. Cheng

  7. Prostate Tissue L. L. Cheng

  8. Linear Regressions Analysis - Concentration - First 16 PCs vs. Vol% of Epithelium, Cancer, & Stroma • 20/199 samples have cancer glands; • 13/82 cases have paired cancer/histol-benign analyzed; • 12/13T2 and 1/13T3 tumors. L. L. Cheng

  9. Canonical (Discriminant) Analysis - Metabolomic (concentration) Profile 6 Cancer P < 0.0001 5 4 Canonical Score 2 3 2 1 Histo-benign 0 0 1 2 3 4 5 6 7 8 9 10 Canonical Score 1 L. L. Cheng Cancer Res. 2005;65:3030-3034

  10. Predicting Cancer Stage L. L. Cheng Cancer Res. 2005;65:3030-3034

  11. Metabolomic Imaging L. L. Cheng

  12. MRSI Carhuapoma JR etal. Stroke 2000, 31:726-732 L. L. Cheng

  13. MRSI Horn JJ etal. Radiology 2006, 238:192-199 L. L. Cheng

  14. 1 2 3 Metabolomic Imaging - Phantom 7T 14T L. L. Cheng Sci. Transl. Med, 2010;2:16ra8

  15. Linear Regressions Analysis – Relative Intensity - First 10 PCs vs. Vol% of Epithelium, Cancer, & Stroma L. L. Cheng

  16. Canonical (Discriminant) Analysis - Metabolomic (Relative Intensity) Profile • 12/13T2 and 1/13T3 tumors. L. L. Cheng Sci. Transl. Med, 2010;2:16ra8

  17. Metabolomic Profiles Principal Component Analysis (Std Peak pi, i=1,2, … 36): PCj for Sample 2 = Aj-(cj,1*p1,2+cj,2*p2,2+cj,3*p3,2+…+cj,36*p36,2) = Aj-Sicj,i*pi,2 ; (i=1,2, … 36) Canonical Analysis (PCk, k=L,M … N): Canonical Score X for Sample 2 = = BX-(eL,X*PCL+eM,X*PCM+…+eN,X*PCN) = BX-Skek,X*PCk; (k=L,M … N) = BX-Skek,X*(Ak-Sick,i*pi,2) = BX-(Skek,X*Ak)-Si (Sk ek,X*ck,i) pi,2 ek,X*ck,i Overall Loading Factor L. L. Cheng

  18. L. L. Cheng

  19. L. L. Cheng

  20. L. L. Cheng

  21. Metabolomic Imaging - Whole Prostate ex vivo Urethra L. L. Cheng Sci. Transl. Med, 2010;2:16ra8

  22. Metabolomic Imaging • Five prostates from prostatectomies; • 7T human scanner; • Three planes of 2D localized MRS, 16x16; • Voxel = 3x3x3 mm3; • Seven tumor histology regions, five inside - four T2 and one T3; • Seven planes analyzed; • Thirteen metabolomic regions (>M+SD, >2) L. L. Cheng Sci. Transl. Med, 2010;2:16ra8

  23. R2 = 0.975 P < 0.013 R2 = 0.998 P < 0.001 T2 T2 T3 T3 P < 0.004 (T2) P < 0.008 (all) AUC = 0.969 (T2 Only) AUC = 0.925 (Including T3) Metabolomic Imaging L. L. Cheng Sci. Transl. Med, 2010;2:16ra8

  24. Predicting Tumor Recurrence L. L. Cheng

  25. Chemical Recurrence L. L. Cheng Prostate, 2009, doi:10.1002/pros.21103

  26. Chemical Recurrence PC4, 6, 7, & 8 PC1-9 Sensitivity AUC = 0.71 AUC = 0.78 1 - Specificity L. L. Cheng Prostate, 2009, doi:10.1002/pros.21103

  27. Lung Cancer Serum Profiles L. L. Cheng

  28. Lung Cancer L. L. Cheng Lung Cancer, 2009, doi:10.1016/j.lingcan.2009.05.012

  29. Lung Cancer: Clinical Data L. L. Cheng Lung Cancer, 2009, doi:10.1016/j.lingcan.2009.05.012

  30. Lung Cancer: Canonical Analysis L. L. Cheng Lung Cancer, 2009, doi:10.1016/j.lingcan.2009.05.012

  31. Lung Cancer: Nominal Logistic Regression Analysis Serum Profile from Serum Alone (SP) Nominal Logistic p < 0.0001 Ctrl: -2.90+2.12SPT+1.21SP SCC: -1.73-1.86SPT+0.77SP AC: -1.10+0.27SPT-1.27SP Serum Profile Based on Tissue (SPT) L. L. Cheng Lung Cancer, 2009, doi:10.1016/j.lingcan.2009.05.012

  32. Conclusions and Acknowledgements Cancer Res 2005 Sci Transl Med 2010 Prostate 2009 Lung Ca 2009 MGH/HMS Melissa A. Burns Jennifer L. Taylor Wnelei He Elkan F. Halpern W. Scott McDougal Chin-Lee Wu MGH/HMS Christen B. Adkins Yifen Zhang Elkan F. Halpern W. Scott McDougal Chin-Lee Wu Charite U., Berlin Andreas Maxeiner Matthias Taupitz MGH/HMS Kate W. Jordan Christen B. Adkins Eugene J. Mark HSPH/MGH/HMS Li Su David C. Christiani MGH/HMS Chin-Lee Wu Kate W. Jordan Eva M. Ratai Christen B. Adkins Elita M. DeFeo Bruce G. Jenkins W. Scott McDougal U. Wis-Milwaukee Jinhua Sheng Leslie Ying L. L. Cheng Grant Supports: NCI/NIH, DOD, MGH Martinos Center, and Bertucci Prostate Cancer Research Fund

More Related