1 / 49

Chiral Symmetry Restoration in Heavy-Ion Collisions

Chiral Symmetry Restoration in Heavy-Ion Collisions. Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA High Energy/Nuclear Physics Seminar Rice University (Houston, TX), 06.11.12.

gay
Download Presentation

Chiral Symmetry Restoration in Heavy-Ion Collisions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chiral Symmetry Restoration in Heavy-Ion Collisions Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA High Energy/Nuclear Physics Seminar Rice University (Houston, TX), 06.11.12

  2. 1.) Intro-I:Probing Strongly Interacting Matter • Bulk Properties: • Equation of State • Microscopic Properties: • -Degrees of Freedom • - Spectral Functions • Phase Transitions: • (Pseudo-) Order Parameters • Would like to extract from Observables: • temperature + transport properties • in-medium spectral functions • signatures of deconfinement + chiral symmetry restoration

  3. 1.2 EM Spectral Function + Fate of Resonances Im Pem(M) in Vacuum Im Πem(M,q;mB,T) • Electromagnetic spectral function • -√s < 2 GeV: non-perturbative • -√s > 2 GeV: perturbative (“dual”) • Vector resonances “prototypes” • - representative for bulk hadrons: • neither Goldstone nor heavy flavor • Medium modifications of resonances • - QCD phase structure • - where in the diagram? e+e-→ hadrons √s = M

  4. 1.3 Phase Transition(s) in Lattice QCD - - ≈ qq / qq “Tcchiral”~150MeV “Tcconf” ~170MeV [Fodor et al ’10] • different “transition” temperatures?! • smooth transitions (smooth e+e- rate!) • chiral restoration in “hadronic phase”?! • (low-mass dileptons!) • hadron resonance gas approx.

  5. Outline 2.) Chiral Symmetry Breaking in Vacuum  “Higgs Mechanism”, Condensates + Mass Gap in QCD  Hadron Spectrum, Chiral Partners + Sum Rules 3.) EM Spectral Function in Medium  Hadronic Theory  QGP + Lattice QCD 4.) EM Probes in Heavy-Ion Collisions  Spectro-, Thermo-, Chrono- + Baro-meter  Excitation Function  Thermal Photons 5.) Conclusions

  6. Q2≤ 2GeV2 → transition to “strong” QCD: • effective d.o.f. = hadrons (Confinement) • massive “constituent quarks” • mq* ≈ 350 MeV ≈ ⅓ Mp (Chiral Symmetry • ~ ‹0|qq|0› condensate! Breaking) ↕⅔fm 2.1 Nonperturbative QCD • well tested at high energies, Q2>2GeV2: • perturbation theory (as = g2/4π<< 1) • degrees of freedom = quarks + gluons • 3 charges (r,g,b), rich of symmetries (mu,d ≈ 5MeV) _

  7. qR qL > > > > - - qL qR 2.2 Chiral Symmetry + QCD Vacuum : flavor + “chiral” (left/right) invariant • “Higgs” Mechanism in Strong Interactions: • qqattraction  condensate fills QCD vacuum! • Spontaneous Chiral Symmetry Breaking - • Profound Consequences: • effective quark mass: • ↔ mass generation! • near-massless Goldstone bosons p0,± • “chiral partners” split: DM ≈ 0.5GeV JP=0±1± 1/2±

  8. 2.3 Mass Gap and Chiral Partners Axial-/Vector Correlators Constituent Quark Mass “Data”: lattice [Bowman et al ‘02] Theory: Instanton Model [Diakonov+Petrov; Shuryak ‘85] pQCD cont. • Spectral shape matters for • chiral symmetry breaking! ● Chiral breaking:|q2| ≤ 2 GeV2

  9. 2.4 Chiral (Weinberg) Sum Rules • Quantify chiral symmetry breaking via observable spectral functions • Vector (r) - Axialvector (a1) spectral splitting [Weinberg ’67, Das et al ’67] t→(2n+1)p t→(2n)p [ALEPH ‘98, OPAL ‘99] pQCD pQCD • Key features of updated “fit”: [Hohler+RR ‘12] • r+a1 resonance, excited states (r’+a1’), universal continuum (pQCD!)

  10. 2.4.2 Evaluation of Chiral Sum Rules in Vacuum • pion decay • constants • chiral quark • condensates • vector-axialvector splitting (one of the) cleanest observable of • spontaneous chiral symmetry breaking • promising (best?) starting point to search for chiral restoration

  11. 2.5 QCD Sum Rules: r and a1 in Vacuum • dispersion relation: [Shifman,Vainshtein+Zakharov ’79] • lhs:hadronic spectral fct. • rhs:operator product expansion • 4-quark + gluon condensate dominant vector axialvector ●typically 0.5% deviation

  12. Outline 2.) Chiral Symmetry Breaking in Vacuum  “Higgs Mechanism”, Condensates + Mass Gap in QCD  Hadron Spectrum, Chiral Partners + Sum Rules 3.) EM Spectral Function in Medium  Hadronic Theory  QGP + Lattice QCD 4.) EM Probes in Heavy-Ion Collisions  Spectro-, Thermo-, Chrono- + Baro-meter  Excitation Function  Thermal Photons 5.) Conclusions

  13. 3.1 Vector Mesons in Hadronic Matter > rB /r0 0 0.1 0.7 2.6 > [Chanfray et al, Herrmann et al, Asakawa et al, RR et al, Koch et al, Klingl et al, Post et al, Eletsky et al, Harada et al …] Dr (M,q;mB ,T) = [M 2 - mr2 -Srpp -SrB -SrM ] -1 r-Propagator: B*,a1,K1... r Sp r SrB,rM= Selfenergies: Srpp= N,p,K… Sp Constraints:decays:B,M→ rN, rp, ... ; scattering:pN→rN, gA, … SPS RHIC/LHC

  14. 3.2 QCD Sum Rules at Finite Temperature [Hatsuda+Lee’91, Asakawa+Ko ’93, Klingl et al ’97, Leupold et al ’98, Kämpfer et al ‘03, Ruppert et al ’05] rV/s T [GeV] Percentage Deviation • r and r’ melting • compatible with • chiral restoration [Hohler +RR ‘12]

  15. 3.3 Chiral Condensate + r-Meson Broadening > Sp effective hadronic theory > - Sp • h = mq h|qq|h > 0 contains quark core + pion cloud • = Shcore + Shcloud ~ + • matches spectral medium effects: resonances + pion cloud • resonances + chiral mixing drive r-SF toward chiral restoration - - qq / qq0

  16. 3.4 Vector Correlator in Thermal Lattice QCD • Euclidean Correlation fct. Lattice (quenched) [Ding et al ‘10] Hadronic Many-Body [RR ‘02] • “Parton-Hadron Duality” of lattice and in-medium hadronic?!

  17. 3.4.2 Back to Spectral Function -Im Pem /(C T q0) • suggests approach to chiral restoration + deconfinement

  18. 3.5 Dilepton Rates: Hadronic - Lattice - Perturbative dRee /dM2 ~ ∫d3q f B(q0;T) Im PV • Hadronic, pert. + lattice QCD • tend to “degenerate” toward~Tc • Quark-Hadron Duality at all M?! • ( degenerate axialvector SF!) dRee/d4q 1.4Tc (quenched) q=0 - [qq→ee] [HTL] [Ding et al ’10] [RR,Wambach et al ’99]

  19. 3.6 Summary: Criteria for Chiral Restoration • Vector (r) – Axialvector (a1) degenerate [Weinberg ’67, Das et al ’67] pQCD • QCD sum rules: • medium modifications ↔ vanishing of condensates • Thermal lattice-QCD • Approach to perturbative rate (QGP)

  20. Outline 2.) Chiral Symmetry Breaking in Vacuum  “Higgs Mechanism”, Condensates + Mass Gap in QCD  Hadron Spectrum, Chiral Partners + Sum Rules 3.) EM Spectral Function in Medium  Hadronic Theory  QGP + Lattice QCD 4.) EM Probes in Heavy-Ion Collisions  Spectro-, Thermo-, Baro- + Chrono-meter  Excitation Function  Thermal Photons 5.) Conclusions

  21. 4.1 Pioneering e+e- Measurements at SPS: CERES • Evolve rates over fireball expansion: Excess Spectra Pb-Au(17.3GeV) Pb-Au(8.8GeV) • first quantitative measurement of excess yield and shape • consistent with a “melting” of the r resonance around Tpc • indications for larger effects at lower beam energy: baryons! • hints for large very-low mass excess (photons! conductivity?!)

  22. 4.2 Increasing Precision: NA60 “Spectrometer” Acc.-correctedm+m- Excess Spectra In-In(158AGeV) [NA60 ‘09] Thermal m+m- Emission Rates Mmm [GeV] [van Hees+RR ’08] • invariant-mass spectrum directly • reflects thermal emission rate!

  23. 4.3 Dilepton Thermometer: Slope Parameters Invariant Rate vs. M-Spectra Transverse-Momentum Spectra cont. Tc=160MeV Tc=190MeV r • Low mass: radiation from around T ~ Tpcc ~ 150MeV • Intermediate mass: T ~ 170 MeV and above • Consistent with pT slopes incl. flow: Teff ~ T + M (bflow)2

  24. 4.4 Sensitivity to Spectral Function In-Medium r-Meson Width • avg. Gr(T~150MeV)~370MeVGr (T~Tc) ≈ 600 MeV → mr • driven by baryons Mmm [GeV]

  25. 4.5 Low-Mass Dileptons: Chronometer In-In Nch>30 • first “explicit” measurement of interacting-fireball lifetime: • tFB≈ (7±1) fm/c

  26. 4.6 Low-Mass e+e- Excitation Function at RHIC PHENIX STAR QM12 • tension between PHENIX and STAR (central Au-Au) • no apparent change of the emission source (?) • consistent with “universal” medium effect around Tpc • partition hadronic/QGP depends on EoS, total yield ~ invariant

  27. 4.7 Direct Photons at RHIC Spectra Elliptic Flow ← excess radiation • Teffexcess = (220±25) MeV • QGP radiation? • radial flow? • v2g,dir comparable to pions! • under-predicted by ealry QGP • emission [Holopainen et al ’11,…]

  28. 4.7.2 Thermal Photon Spectra + v2 thermal + prim. g [van Hees,Gale+RR ’11] • hadronic emission close to Tpc essential (continuous rate!) • flow blue-shift: Teff ~ T √(1+b)/(1-b) • e.g. b=0.3: T ~ 220/1.35~ 160 MeV • small slope + large v2 suggest main emission around Tpc • confirmed with hydro evolution [He at al in prep.]

  29. 5.) Conclusions • r-meson gradually melts into QGP continuum radiation • Mechanisms underlying r-melting (p cloud + resonances) find • counterparts in hadronic S-terms, which restore chiral symmetry • Quantitative studies relating r-SF to chiral order parameters with • QCD and Weinberg-type sum rules ongoing • Low-mass dilepton spectra in URHICs point at universal source, • with avg. emission temperatures around Tpc~150MeV (slopes, v2) • Future precise characterization of EM emission source at • RHIC/LHC + CBM/NICA/SIS holds rich info on QCD phase • diagram (spectral shape + disp. rel., source collectivity + lifetime)

  30. 4.3 Dimuon pt-Spectra and Slopes: Barometer Effective Slopes Teff • theo. slopes originally too soft • increase fireball acceleration, • e.g. a┴ = 0.085/fm → 0.1/fm • insensitive to Tc=160-190MeV

  31. 4.4 Low-Mass e+e- at RHIC: PHENIX vs. STAR • “large” enhancement not accounted • for by theory • cannot be filled by QGP radiation… • (very) low-mass region • overpredicted… (SPS?!)

  32. 4.1.2 Sensitivity of NA60 to Spectral Function Emp. scatt. ampl. + T-r approximation Hadronic many-body Chiral virial expansion Thermometer [CERN Courier Nov. 2009] • Significant differences in low-mass region • Overall slope T~150-200MeV (true T, no blue shift!)

  33. p Sp Sp Sp r Sr Sr Sr 3.3 Axialvector in Medium: Dynamical a1(1260) p a1 resonance + + . . . = Vacuum: r In Medium: + + . . . [Cabrera,Jido, Roca+RR ’09] • in-medium p + r propagators • broadening of p-r scatt. Amplitude • pion decay constant in medium:

  34. 4.5.2 Revisit Ingredients Emission Rates Fireball Evolution • multi-strange hadrons at “Tc” • v2bulkfully built up at hadronization • chemical potentials for p, K, … • Hadron - QGP continuity! [Turbide et al ’04] [van Hees et al ’11]

  35. 5.1 Thermal Dileptons at LHC • charm comparable, accurate (in-medium) measurement critical • low-mass spectral shape in chiral restoration window

  36. 5.2 Chiral Restoration Window at LHC • low-mass spectral shape in chiral restoration window: • ~60% of thermal low-mass yield in “chiral transition region” • (T=125-180MeV) • enrich with (low-) pt cuts

  37. 5.3 QGP Barometer: Blue Shift vs. Temperature RHIC SPS • QGP-flow driven increase of Teff ~ T + M (bflow)2 at RHIC • temperature overcomes flowing late r’s → minimum (opposite to SPS!) • expect to be more pronounced at LHC

  38. 5.4 Elliptic Flow Diagnostics (RHIC) • maximum structure due to late r decays

  39. 2.3.2 NA60 Mass Spectra: pt Dependence Mmm [GeV] • more involved at pT>1.5GeV: Drell-Yan, primordial/freezeout r , …

  40. 2.2 EM Probes at SPS • all calculated with the same e.m. spectral function! • thermal source: Ti≈210MeV, HG-dominated, r-meson melting!

  41. 4.1.2 Mass-Temperature Emission Correlation • generic space-time argument: •  • Tmax ≈ M / 5.5 • (forImPem =const) • thermal photons: • Tmax≈ (q0/5) * (T/Teff)2 • → reduced by flow blue-shift! • Teff ~ T * √(1+b)/(1-b)

  42. 4.7.2 Light Vector Mesons at RHIC + LHC • baryon effects important even at rB,tot= 0 : • sensitive to rBtot= rB + rB (r-N and r-N interactions identical) • w also melts, f more robust ↔ OZI - -

  43. 3.2 Dimuon pt-Spectra and Slopes: Barometer pions: Tch=160MeV a┴ =0.1/fm pions: Tch=175MeV a┴ =0.085/fm • modify fireball evolution: • e.g. a┴ = 0.085/fm → 0.1/fm • both large and small Tccompatible • with excess dilepton slopes

  44. 2.3.2 Acceptance-Corrected NA60 Spectra Mmm [GeV] Mmm [GeV] • more involved at pT>1.5GeV: Drell-Yan, primordial/freezeout r , …

  45. 4.4.3 Origin of the Low-Mass Excess in PHENIX? • QGP radiation insufficient: • space-time , lattice QGP rate + • resum. pert. rates too small • must be of long-lived hadronic origin • Disoriented Chiral Condensate (DCC)? • Lumps of self-bound pion liquid? • Challenge: consistency with hadronic data, NA60 spectra! [Bjorken et al ’93, Rajagopal+Wilczek ’93] - “baked Alaska” ↔ small T - rapid quench+large domains ↔ central A-A - ptherm + pDCC → e+ e- ↔ M~0.3GeV, small pt [Z.Huang+X.N.Wang ’96 Kluger,Koch,Randrup ‘98]

  46. 4.1 Nuclear Photoproduction: rMeson in Cold Matter g + A → e+e- X • extracted • “in-med” r-width • Gr≈ 220 MeV e+ e- Eg≈1.5-3 GeV g r [CLAS+GiBUU ‘08] • Microscopic Approach: + in-med. r spectral fct. product. amplitude full calculation fix density 0.4r0 Fe-Ti r g N [Riek et al ’08, ‘10] M[GeV] • r-broadening reduced at high 3-momentum; need low momentum cut!

  47. 1.2 Intro-II:EoS and Particle Content • Hadron Resonance Gas until close to Tc • - but far from non-interacting: • short-lived resonances R: • a + b → R → a + b,tR ≤ 1 fm/c • Parton Quasi-Particles shortly above Tc • - but large interaction measure I(T) = e -3P  both “phases” strongly coupled (hydro!): - large interaction rates → large collisional widths - resonance broadening → melting → quarks - broad parton quasi-particles - “Feshbach” resonances around Tc (coalescence!)

  48. 2.3.6 Hydrodynamics vs. Fireball Expansion • very good agreement • between original • hydro [Dusling/Zahed] • and fireball [Hees/Rapp]

  49. e+ e- γ 2.1 Thermal Electromagnetic Emission EM Current-Current Correlation Function: Thermal Dilepton and Photon Production Rates: Im Πem(M,q) Im Πem(q0=q) r-meson dominated Low Mass: ImPem~ [ImDr + ImDw /10 + ImDf /5]

More Related