1 / 55

Update on Search for Chiral Symmetry Restoration in Heavy-Ion Collisions

Update on Search for Chiral Symmetry Restoration in Heavy-Ion Collisions. Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA Heavy-Ion Forum Seminar CERN (Geneva, Switzerland), 03.05.12.

milo
Download Presentation

Update on Search for Chiral Symmetry Restoration in Heavy-Ion Collisions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Update on Search for Chiral Symmetry Restoration in Heavy-Ion Collisions Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA Heavy-Ion Forum Seminar CERN (Geneva, Switzerland), 03.05.12

  2. 1.) Intro-I:Probing Strongly Interacting Matter • Bulk Properties: • Equation of State • Microscopic Properties: • -Degrees of Freedom • - Spectral Functions • Phase Transitions: • (Pseudo-) Order Parameters • Would like to extract from Observables: • temperature + transport properties • in-medium spectral functions • signatures of deconfinement + chiral symmetry restoration

  3. e+ e- γ 1.2 Electromagnetic Probes in HICs • Thermal Emission Rate • micro-physics: • → Electro-Magnetic spectral function • Space-Time Evolution of Fireball • macro-physics (equation of state: e(P)) • → temperature + flow fields • Emission Characteristics • interplay temperature – 3-volume: • high T, small V → large mass (M>1GeV) • lower T, large V → low mass (M<1GeV)

  4. 1.3 EM Spectral Function + Fate of Resonances Im Pem(M) in Vacuum Im Πem(M,q;mB,T) • Electromagn. spectral function • -√s < 2 GeV: non-perturbative • -√s > 2 GeV: perturbative (“dual”) • Vector resonances “prototypes” • - representative for bulk hadrons: • neither Goldstone nor heavy flavor • Modifications of resonances • ↔ phase structure: • - hadron gas → Quark-Gluon Plasma • - realization of transition? e+e-→ hadrons √s = M

  5. 1.4 Phase Transition(s) in Lattice QCD - - ≈ qq / qq “Tcchiral”~150MeV “Tcconf” ~170MeV [Fodor et al ’10] • different “transition” temperatures?! • smooth transitions! (smooth e+e- rate) • chiral restoration in “hadronic phase”?! • (low-mass dileptons!) • hadron resonance gas

  6. Outline 2.) Chiral Symmetry Breaking in Vacuum  “Higgs Mechanism”, Condensates + Mass Gap in QCD  Hadron Spectrum, Chiral Partners + Sum Rules 3.) EM Spectral Function in Medium  Hadronic Theory  QGP + Lattice QCD 4.) Highlights of EM Probes in Heavy-Ion Collisions  Spectro-, Thermo-, Chrono- + Baro-meter  Thermal Photons 5.) Low-Mass Dileptons at LHC  Mass Spectra + Collectivity 6.) Conclusions

  7. Q2≤ 2GeV2 → transition to “strong” QCD: • effective d.o.f. = hadrons (Confinement) • massive “constituent quarks” • mq* ≈ 350 MeV ≈ ⅓ Mp (Chiral Symmetry • ~ ‹0|qq|0› condensate! Breaking) ↕⅔fm 2.1 Nonperturbative QCD • well tested at high energies, Q2>2GeV2: • perturbation theory (as = g2/4π<< 1) • degrees of freedom = quarks + gluons (mu ≈ md ≈ 5 MeV ) _

  8. qR qL > > > > - - qL qR 2.2 Chiral Symmetry + QCD Vacuum : flavor + “chiral” (left/right) invariant • “Higgs” Mechanism in Strong Interactions: • qqattraction  condensate fills QCD vacuum! • Spontaneous Chiral Symmetry Breaking - • Profound Consequences: • effective quark mass: • ↔ mass generation! • near-massless Goldstone bosons p0,± • “chiral partners” split: DM ≈ 0.5GeV JP=0±1± 1/2±

  9. 2.3 Mass Gap and Chiral Partners Axial-/Vector Correlators Constituent Quark Mass “Data”: lattice [Bowman et al ‘02] Theory: Instanton Model [Diakonov+Petrov; Shuryak ‘85] pQCD cont. • Spectral shape matters for • chiral symmetry breaking! ● Chiral breaking:|q2| ≤ 2 GeV2

  10. 2.4 Chiral (Weinberg) Sum Rules • Quantify chiral symmetry breaking via observable spectral functions • Vector (r) - Axialvector (a1) spectral splitting [Weinberg ’67, Das et al ’67] t→(2n+1)p t→(2n)p [ALEPH ‘98, OPAL ‘99] pQCD pQCD • Key features of updated “fit”: [Hohler+RR ‘12] • r+a1 resonance, excited states (r’+a1’), universal continuum (pQCD!)

  11. 2.4.2 Evaluation of Chiral Sum Rules in Vacuum • pion decay • constants • chiral quark • condensates • vector-axialvector splitting (one of the) cleanest observable of • spontaneous chiral symmetry breaking • promising (best?) starting point to search for chiral restoration

  12. 2.5 QCD Sum Rules: r and a1 in Vacuum • dispersion relation: [Shifman,Vainshtein+Zakharov ’79] • lhs:hadronic spectral fct. • rhs:operator product expansion • 4-quark + gluon condensate dominant

  13. Outline 2.) Chiral Symmetry Breaking in Vacuum  “Higgs Mechanism”, Condensates + Mass Gap in QCD  Hadron Spectrum, Chiral Partners + Sum Rules 3.) EM Spectral Function in Medium  Hadronic Theory  QGP + Lattice QCD 4.) Highlights of EM Probes in Heavy-Ion Collisions  Spectro-, Thermo-, Chrono- + Baro-meter  Thermal Photons 5.) Low-Mass Dileptons at LHC  Mass Spectra + Collectivity 6.) Conclusions

  14. 3.1 Vector Mesons in Hadronic Matter > rB /r0 0 0.1 0.7 2.6 > [Chanfray et al, Herrmann et al, Asakawa et al, RR et al, Koch et al, Klingl et al, Post et al, Eletsky et al, Harada et al …] Dr (M,q;mB ,T) = [M 2 - mr2 -Srpp -SrB -SrM ] -1 r-Propagator: B*,a1,K1... r Sp r SrB,rM= Selfenergies: Srpp= N,p,K… Sp Constraints:decays:B,M→ rN, rp, ... ; scattering:pN→rN, gA, … SPS RHIC/LHC

  15. 3.2 QCD Sum Rules: r(770) in Hot Matter [Hatsuda+Lee’91, Asakawa+Ko ’93, Klingl et al ’97, Leupold et al ’98, Kämpfer et al ‘03, Ruppert et al ’05] • dispersion relation: • medium effects largely driven by 4-quark condensate • similar for axialvector

  16. p Sp Sp Sp r Sr Sr Sr 3.3 Axialvector in Medium: Dynamical a1(1260) p a1 resonance + + . . . = Vacuum: r In Medium: + + . . . [Cabrera,Jido, Roca+RR ’09] • in-medium p + r propagators • broadening of p-r scatt. Amplitude • pion decay constant in medium:

  17. 3.4 Vector Correlator in Thermal Lattice QCD • Euclidean Correlation fct. Lattice (quenched) [Ding et al ‘10] Hadronic Many-Body [RR ‘02] • “Parton-Hadron Duality” of lattice and in-medium hadronic?!

  18. 3.4.2 Back to Spectral Function -Im Pem /(C T q0) • suggests approach to chiral restoration + deconfinement

  19. 3.5 Dilepton Rates: Hadronic - Lattice - Perturbative dRee /dM2 ~ ∫d3q f B(q0;T) Im PV • Hadronic, pert. + lattice QCD • tend to “degenerate” toward~Tc • Quark-Hadron Duality at all M?! • ( degenerate axialvector SF!) dRee/d4q 1.4Tc (quenched) q=0 - [qq→ee] [HTL] [Ding et al ’10] [RR,Wambach et al ’99]

  20. 3.6 Summary: Criteria for Chiral Restoration • Vector (r) – Axialvector (a1) degenerate [Weinberg ’67, Das et al ’67] pQCD • QCD sum rules: • medium modifications ↔ vanishing of condensates • Agreement with thermal lattice-QCD • Approach to perturbative rate (QGP)

  21. Outline 2.) Chiral Symmetry Breaking in Vacuum  “Higgs Mechanism”, Condensates + Mass Gap in QCD  Hadron Spectrum, Chiral Partners + Sum Rules 3.) EM Spectral Function in Medium  Hadronic Theory  QGP + Lattice QCD 4.) Highlights of EM Probes in Heavy-Ion Collisions  Spectro-, Thermo-, Chrono- + Baro-meter  Thermal Photons 5.) Low-Mass Dileptons at LHC  Mass Spectra + Collectivity 6.) Conclusions

  22. 4.1 Dilepton Rates vs. Exp.: NA60 “Spectrometer” • Evolve rates over fireball expansion: Thermal m+m- Emission Rate Acc.-correctedm+m- Excess Spectra In-In(158AGeV) [NA60 ‘09] Mmm [GeV] [van Hees+RR ’08] • invariant-mass spectrum directly • reflects thermal emission rate!

  23. 4.1.2 Sensitivity of NA60 to Spectral Function Emp. scatt. ampl. + T-r approximation Hadronic many-body Chiral virial expansion Thermometer [CERN Courier Nov. 2009] • Significant differences in low-mass region • Overall slope T~150-200MeV (true T, no blue shift!)

  24. 4.1.3 Sensitivity to Spectral Function II In-Medium r-Meson Width • avg. Gr(T~150MeV)~370MeVGr (T~Tc) ≈ 600 MeV → mr • driven by baryons Mmm [GeV]

  25. 4.2 Low-Mass Dileptons: Chronometer In-In Nch>30 • first “explicit” measurement of interacting-fireball lifetime: • tFB≈ (7±1) fm/c

  26. 4.3 Dimuon pt-Spectra and Slopes: Barometer Effective Slopes Teff • theo. slopes originally too soft • increase fireball acceleration, • e.g. a┴ = 0.085/fm → 0.1/fm • insensitive to Tc=160-190MeV

  27. 4.4 Low-Mass e+e- at RHIC: PHENIX vs. STAR • “large” enhancement not accounted • for by theory • cannot be filled by QGP radiation… • (very) low-mass region • overpredicted… (SPS?!)

  28. 4.5 Direct Photons at RHIC Spectra Elliptic Flow ← excess radiation • Teffexcess = (220±25) MeV • QGP radiation? • radial flow? • v2g,dir comparable to pions! • under-predicted by ealry QGP • emission [Holopainen et al ’11,…]

  29. 4.5.2 Revisit Ingredients Emission Rates Fireball Evolution • multi-strange hadrons at “Tc” • v2bulkfully built up at hadronization • chemical potentials for p, K, … • Hadron - QGP continuity! [Turbide et al ’04] [van Hees et al ’11]

  30. 4.5.3 Thermal Photon Spectra + v2: PHENIX thermal + prim. g • both spectral slope and v2 point at • blue-shifted hadronic source… • to be tested in full hydro [van Hees,Gale+RR ’11]

  31. Outline 2.) Chiral Symmetry Breaking in Vacuum  “Higgs Mechanism”, Condensates + Mass Gap in QCD  Hadron Spectrum, Chiral Partners + Sum Rules 3.) EM Spectral Function in Medium  Hadronic Theory  QGP + Lattice QCD 4.) Highlights of EM Probes in Heavy-Ion Collisions  Spectro-, Thermo-, Chrono- + Baro-meter  Thermal Photons 5.) Low-Mass Dileptons at LHC  Mass Spectra + Collectivity 6.) Conclusions

  32. 5.1 Thermal Dileptons at LHC • charm comparable, accurate (in-medium) measurement critical • low-mass spectral shape in chiral restoration window

  33. 5.2 Chiral Restoration Window at LHC • low-mass spectral shape in chiral restoration window: • ~60% of thermal low-mass yield in “chiral transition region” • (T=125-180MeV) • enrich with (low-) pt cuts

  34. 5.3 QGP Barometer: Blue Shift vs. Temperature RHIC SPS • QGP-flow driven increase of Teff ~ T + M (bflow)2 at RHIC • temperature overcomes flowing late r’s → minimum (opposite to SPS!) • expect to be more pronounced at LHC

  35. 5.4 Elliptic Flow Diagnostics (RHIC) • maximum structure due to late r decays

  36. 6.) Conclusions:Potential of Thermal EM Radiation at LHC • Spectrometer: “prototype” in-med. spectral function, • hadron-to-quark transition • Chiral Restoration: Weinberg + QCD sum rules, • lattice QCD (mB~0!) + perturbative limit • Thermometer: int.-mass dileptons (heavy-flavor subtracted) • Chronometer: fireball lifetimes • Barometer: pt spectra + elliptic flow in M-slices (0…2GeV) • Quality control: rates (constraints, continuity), medium evolution, • consistency with SPS+RHIC, … • Needed: high-quality data to determine spectral shape, then use • with flow diagnostics • (Non-) Redundancy of RHIC and LHC critical

  37. 2.3.2 NA60 Mass Spectra: pt Dependence Mmm [GeV] • more involved at pT>1.5GeV: Drell-Yan, primordial/freezeout r , …

  38. 2.2 EM Probes at SPS • all calculated with the same e.m. spectral function! • thermal source: Ti≈210MeV, HG-dominated, r-meson melting!

  39. 2.) Transport: Electric Conductivity • hadronic theories (T~150MeV): • - chiral pert. theory (pion gas): sem / T ~ 0.11 e2 • - hadronic many-body theory: sem / T ~ 0.09 e2 [Fernandez-Fraile+ Gomez-Nicola ’07] • lattice QCD (T ~ (1.5-3) Tc ): • sem /T ~ (0.26±0.02) e2 [Gupta ’04, Aarts et al ’07, Ding et al. ‘11] • soft-photon limit of • thermal emission rate • EM Susceptibility ( → charge fluctuations): • Q2 -Q 2 =χem = Πem(q0=0,q→0)

  40. 5.2 Intermediate-Mass Dileptons: Thermometer • use invariant continuum radiation (M>1GeV): no blue shift, Tslope = T ! Thermometer • independent of partition HG vs QGP (dilepton rate continuous/dual) • initial temperature Ti ~ 190-220 MeV at CERN-SPS

  41. Add pp→ppgBremsstrahlung [Liu+RR’06] 2.2 Soft Photons at SPS: WA98 Thermal Radiation + pQCD [Turbide,RR +Gale’04]

  42. 4.1.2 Mass-Temperature Emission Correlation • generic space-time argument: •  • Tmax ≈ M / 5.5 • (forImPem =const) • thermal photons: • Tmax≈ (q0/5) * (T/Teff)2 • → reduced by flow blue-shift! • Teff ~ T * √(1+b)/(1-b)

  43. 4.7.2 Light Vector Mesons at RHIC + LHC • baryon effects important even at rB,tot= 0 : • sensitive to rBtot= rB + rB (r-N and r-N interactions identical) • w also melts, f more robust ↔ OZI - -

  44. = = 5.3 Intermediate Mass Emission: “Chiral Mixing” [Dey, Eletsky +Ioffe ’90] • low-energy pion interactions fixed by chiral symmetry 0 0 0 0 • mixing parameter • degeneracy with perturbative • spectral fct. down to M~1GeV • physical processes at M≥ 1GeV: • pa1→ e+e- etc. (“4p annihilation”)

  45. 3.2 Dimuon pt-Spectra and Slopes: Barometer pions: Tch=160MeV a┴ =0.1/fm pions: Tch=175MeV a┴ =0.085/fm • modify fireball evolution: • e.g. a┴ = 0.085/fm → 0.1/fm • both large and small Tccompatible • with excess dilepton slopes

  46. 2.3.2 Acceptance-Corrected NA60 Spectra Mmm [GeV] Mmm [GeV] • more involved at pT>1.5GeV: Drell-Yan, primordial/freezeout r , …

  47. 4.4.3 Origin of the Low-Mass Excess in PHENIX? • QGP radiation insufficient: • space-time , lattice QGP rate + • resum. pert. rates too small • must be of long-lived hadronic origin • Disoriented Chiral Condensate (DCC)? • Lumps of self-bound pion liquid? • Challenge: consistency with hadronic data, NA60 spectra! [Bjorken et al ’93, Rajagopal+Wilczek ’93] - “baked Alaska” ↔ small T - rapid quench+large domains ↔ central A-A - ptherm + pDCC → e+ e- ↔ M~0.3GeV, small pt [Z.Huang+X.N.Wang ’96 Kluger,Koch,Randrup ‘98]

  48. 2.3.3 Spectrometer III: Before Acceptance Correction emp. ampl. + “hard” fireball hadr. many-body + fireball schem. broad./drop. + HSD transport chiral virial + hydro • Discrimination power much reduced • can compensate spectral “deficit” by larger flow: lift pairs into acceptance

  49. 4.2 Improved Low-Mass QGP Emission • LO pQCD spectral function: rV(q0,q) = 6∕9 3M2/2p [1+QHTL(q0)] • 3-momentum augmented lattice-QCD rate (finite g rate)

  50. 4.4.1 Variations in QGP Radiation • improvements in QGP rate insufficient

More Related