1 / 44

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5. Fundamentals of low-noise design. 2) i dsh 2 = 2 q ( I F + I S ). I D. = 2 q ( I D + 2 I S ).  2 q I D. i df. i dsh. r d. 4) i dsh 2 = 2 q I D = 2 k T / r d. k T q I D. I D. 3) r d . r d. e dsh.

Download Presentation

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design 5.5. Fundamentals of low-noise design

  2. 2) idsh2= 2q(IF+IS ) ID = 2q(ID+2IS )  2qID idf idsh rd 4) idsh2= 2qID = 2kT/ rd kT qID ID 3) rd rd edsh Kf ID f idf rd idn2= 2qID+ , Kf= 2qff Note that dynamic resistances do not generate any thermal noise since them dissipate no power, vd id 0. 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.1. Junction-diode noise model 5.5.1. Junction-diode noise model ID VD /VT 1) ID= IS e - IS = IF-IS 5) edsh2= (2kT/ rd )rd 2 = 2kTrd At low frequencies and ID >> IS ,

  3. vbt2= 4kTrb icsh2= 2qIC ibsh2= 2qIB Kf IB f ibf 2= 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model 5.5.2. BJT noise model C Noiseless vbt rb B icsh ibf ibsh E NB: icf =0  JC < JB,ic=hfeib,(*) ict =0  RC<0.1W, ic=hfeib *Negligible surface effects compared to FETs.

  4. RS ic vs ? vn s RS+rb+rp hfe vn s(t)=vst(t)+vbt(t)+[ibf (t)+ibsh(t)](RS+rb) + icsh(t) 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model A. Total input noise vbt vbt rb B ip C hfe ip icsh rp ro ibf ibsh 1) Total input noise vs. time, vn s(t). 2) Power spectral density of the total input noise, vn s2(f).

  5. ? vn s vn s RS+rb+rp hfe vn s(t)=vst(t)+vbt(t)+[ibf (t)+ibsh(t)](RS+rb) + icsh(t) RS+rb+rp hfe 2 icsh2 vn s2=4kT(rb+ RS) +(ibf 2+ibsh2)(RS+rb)2+ 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model A. Total input noise RS vbt vbt rb B ip C hfe ip ic vs icsh rp ro ibf ibsh 1) Total input noise vs. time, vn s(t). 2) Power spectral density of the total input noise, vn s2(f).

  6. vn s 2 (RS+rb)2 hfe RS+rb+hfeVT /IC hfe vn s2= 4kT(rb+ RS) +2qIC + 2qIC hfeVT (1+ hfe )0.5(RS+rb) IC opt= 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model B. Optimum collector current RS vbt rb B ip C hfe ip ic rp ro RS+rb+rp hfe 2 icsh2 vn s2=4kT(rb+ RS) +ibsh2 (RS+rb)2+ ibf =0 Reference: [7]

  7. rb+rp hfe 2 en2= vn s2= 4kTrb+(ibf 2+ibsh2)rb2+ icsh2 RS= RS=0 icsh2 hfe2 vn s2 RS2 in2==ibf 2+ ibsh2+ 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model C. en- in noise model RS en rb B ip C hfe ip ic vs in rp ro RS+rb+rp hfe 2 icsh2 vn s2=4kT(rb+ RS) +(ibf 2+ibsh2)(RS+rb)2+

  8. en in 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model BJT en- in noise model f >> ff rb= 100 W IC = 1 mA hfe= 100 en=1.36 nV/Hz0.5 in=1.8 pA/Hz0.5 en /in=756 W RS= 756 W in RS= 1.4 nV/Hz0.5 C B E rb+rp hfe 2 en2= 4kTrb+(ibf 2+ibsh2)rb2+ icsh2 icsh2 hfe2 in2=ibf 2+ ibsh2+

  9. IC opt IC opt 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model D. Optimum source resistance at IC opt RS en rb B ip C hfe ip ic vs rp ro in en in = rb21+1+hfe Rs opt=

  10. 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model 5.4.3. JFET noise model D Noiseless G idf idt igsh S igsh2= 2qIG idt2= 4kT/(3/2gm) Kf ID f idf 2= NB: idsh =0

  11. id vgs 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model Equivalent small-signal model gmvgs ig G D rgs ro igsh idf idt

  12. id vgs vgs 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model Equivalent small-signal model gmvgs ig G D rgs ro 1/gm igsh idf idt

  13. vgs 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model Equivalent small-signal model gmvgs ig G D ro ~1/gm igsh idf idt

  14. RS id vs vgs ? vn s 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model A. Total input noise gmvgs ig G D ro ~1/gm igsh idf idt 1) Total input noise vs. time, vn s(t).

  15. igsh Rs RS vs ? vn s vn s(t)=vst(t)+igsh(t)RS+[idf (t)+idt(t)](1/gm) 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model A. Total input noise gmvgs ig G D id vgs ro ~1/gm igsh idf idt 1) Total input noise vs. time, vn s(t).

  16. RS vs ? vn s vn s vn s(t)=vst(t)+igsh(t)RS+[idf (t)+idt(t)](1/gm) 2) Power spectral density of the total input noise, vn s2(f). vn s2=4kTRS +igsh2RS2+(idf 2+idt2)/gm2 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model A. Total input noise gmvgs igsh Rs ig G D id vgs ro ~1/gm idf idt 1) Total input noise vs. time, vn s(t).

  17. en in ? vn s vn s en2= vn s2= (idf 2+idt2)/gm2 RS = RS =0 vn s2 RS2 in2==igsh2 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model B. en- in noise model gmvgs igsh Rs RS ig G D id vs vgs ro ~1/gm idf idt vn s2=4kTRS +igsh2RS2+(idf 2+idt2)/gm2

  18. en in 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model BJT JFET en- in noise model f >> ff Vp = 2 V IDSS= 10 mA IG = 10 pA en=1.8 nV/Hz0.5 in=1.8 fA/Hz0.5 en /in=1 MW RS= 1 MW in RS= 1.8 nV/Hz0.5 f >> ff rb= 100 W IC = 1 mA hfe= 100 en=1.36 nV/Hz0.5 in=1.8 pA/Hz0.5 en /in=756 W RS= 756 W in RS= 1.4 nV/Hz0.5 D G S en2= (idf 2+idt2)/gm2 in2=igsh2

  19. idt2= 4kT/(3/2gm) Kf ID f idf 2= 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.4. MOSFET noise model 5.5.4. MOSFET noise model D Noiseless G idt idf S NB: igsh =0 idsh =0

  20. RS id vs ? vn s vn s vn s(t)= vst(t)+[idf (t)+idt(t)](1/gm) vn s2=4kTRS +(idf 2+idt2)/gm2 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.4. MOSFET noise model A. Total input noise gmvgs G D ro 1/gm idf idt 1) Total input noise vs. time, vn s(t). 2) Power spectral density of the total input noise, vn s2(f).

  21. en in en2= vn s2= (idf 2+idt2)/gm2 RS = RS =0 vn s2 Rs2 in2== 0 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.4. MOSFET noise model B. en- in noise model vn s gmvgs RS G D id vs ro 1/gm vn s2=4kTRS +(idf 2 +idt2)/gm2

  22. 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.4. MOSFET noise model JFET MOSFET en- in noise model f >> ff Vp = 2 V IDSS= 10 mA IG = 10 pA en=1.8 nV/Hz0.5 in=1.8 fA/Hz0.5 en /in=1 MW RS= 1 MW in RS= 1.8 nV/Hz0.5 f >> ff Vp = 2 V IDSS= 10 mA en=1.8 nV/Hz0.5 D en G S en2= (idf 2+idt2)/gm2 in= 0

  23. 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect 5.5.5. Frequency response effect The aim is to analyze the dependence of a transistor en and in on frequency and the operating point. VCC iC RS vs VBB Cm vbt vbt RS rb B C hfe ip ic ip Cp vs icsh rp ro ibf ibsh

  24. 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect A. Total input noise Cm RS rb is B C hfe ip ic ip Cp vs rp ro 1) Transconductance gain (icm<< hfe ip) ic vs hfe [1/j2pf(Cp+Cm )]/[rp+1/j2pf(Cp+Cm )] RS +rb+rpII[1/j2pf(Cp+Cm )] ___ Ag = ____________________________________ is=1 hfe /(RS +rb+rp ) 1+j2pft = _____________ , t = [(RS + rb)IIrp ](Cp+Cm )

  25. vn s 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect Cm vbt vbt RS rb B C hfe ip ic ip Cp vs icsh rp ro ibf ibsh hfe /(RS +rb+rp ) 1+j2pft Ag= _____________ , t = [(RS + rb)IIrp ](Cp+Cm ) 2) Power spectral density of the total input noise, vn s2(f). RS +rb+rp hfe 2 [1+(2pft)2] icsh2 vn s2=4kT(RS +rb)+(ibf 2+ibsh2)(RS+rb)2+

  26. RS = RS =0 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect RS +rb+rp hfe 2 [1+(2pft)2] icsh2 vn s2=4kT(RS +rb)+(ibf 2+ibsh2)(RS+rb)2+ t = [(RS + rb)IIrp ](Cp+Cm ) 3) en and in of the transistor. rb+rp hfe 2 en2= vn s2= 4kTrb+(ibf 2+ibsh2)rb2 + [1+(2pften)2] icsh2 ten= (rbIIrp )(Cp+Cm ) icsh2 hfe2 vn s2 RS2 = ibf 2+ibsh2 + [1+(2pftin)2] in2= tin= rp (Cp+Cm )

  27. en in 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect B. en- in noise model for high-frequencies Cm RS rb B C hfe ip ic ip Cp vs rp ro rb+rp hfe 2 en2= 4kTrb+(ibf 2+ibsh2)rb2 + [1+(2pften)2] icsh2 ten= (rbIIrp )(Cp+Cm ) icsh2 hfe2 ibf 2+ibsh2 + [1+(2pftin)2] in2= tin= rp (Cp+Cm )

  28. 5 0 4 -20 3 2 -40 1 Ag Ag max dB 100 101 102 103 104 105 106 107 108 109 ____ 100 101 102 103 104 105 106 107 108 109 f, Hz 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect C. en(f)for differentIC rb+rp hfe 2 en2= 4kTrb+(ibf 2+ibsh2)rb2 + [1+(2pften)2] icsh2 IC opt= 24 mA IC = 0.1 mA en(f) nV/Hz0.5 rb= 100 W hfe= 100 Cm = 1 pF Cp (1 mA)= 100 pF

  29. 8 0 6 -20 4 2 -40 0 Ag Ag max dB ____ 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect D. in(f)for differentIC icsh2 hfe2 ibf 2+ibsh2 + [1+(2pftin)2] in2= IC opt= 24 mA IC = 0.1 mA in(f) pA/Hz0.5 100 101 102 103 104 105 106 107 108 109 rb= 100 W hfe= 100 Cm = 1 pF Cp (1 mA)= 100 pF 100 101 102 103 104 105 106 107 108 109 f, Hz

  30. V(INOISE)*1G V(Out1)/V(V1:+)/10 V(ONOISE)*1G/10 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect E. Noise simulation inPSPICE 30 20 10 0 1.0Hz 10KHz 100MHz 1.0THz Frequency

  31. rb= 40 W hfe= 500 ro = IC = 1 mA IDSS= 2 mA Vp= 2 V ro = ID = 1 mA RS+rb+rp hfe 2 icsh2 vn s2=4kT(rb+ RS) +(ibf 2+ibsh2)(RS+rb)2+ vn s2=4kTRS +igsh2RS2+(idf 2+idt2)/gm2 vn s2=4kTRS +(idf 2+idt2)/gm2 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.6. Comparison of the BJT, JFET and MOSFET 5.5.6. Comparison of the BJT, JFET and MOSFET

  32. IC opt 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.6. Comparison of the BJT, JFET and MOSFET 100 Amplitude spectral density of the total input noise vn s as a function of RS vn s nV/Hz0.5 5 The 1/f noise is neglected. The JFET gate current is neglected. 1 102 103 104 105 RS, W

  33. RS = 100 W RS = 10 kW 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect Example: Comparison of an BJT and JFET in PSPICE en at S = 4kTRS +en 2 +2ren in +(in RS)2

  34. 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.6. Comparison of the BJT, JFET and MOSFET MOSFET Conclusion: Guide for selection of the preamplifier JFET IC amplifiers BJT Transformer coupling 1 10 100 1 k 10 k 100 k 1 M 10 M 100 M 1 G 10 G 100 G Source resistance, RS Reference: [9]

  35. vbt rb B C hfe ip ip io icsh rp ro vst ibf ibsh E RS vct vet vs RE RC 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit 5.5.7 Noise analysis of a CE amplifier VCC RC RS vs RE VBB ro

  36. ? vn s 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit • Our final aim is to find and minimize the total input noise vn s. vbt rb B C hfe ip ip io icsh rp vst ibf ibsh E RS vet vct vs RE RC • Let us first find vn s by applying superposition.

  37. io vs AOL 1+AOLb As =Gs + Gs bs fwd ___ _______ -hfe 1+hfe RE/(RE +RS+rb+rp) 1 RS+rb+rp+RE As= +0 ____________________ ___________ 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit • 1) Signal gain As for vs, vst, vbt, and vet. vbt rb B C hfe ip ip io rp vst E RS vet vs RE RC

  38. io ibf AOL 1+AOLb Abf =Gbf + Gbf bbf fwd ___ _______ RS+rb+RE RS+rb+RE +rp hfe 1+hfe RE/(RE +RS+rb+rp) Abf= +0 ____________________ ___________ 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit • 2) Noise gain Abf for ibf and ibsh. rb B C hfe ip ip io rp ibf ibsh E RS vs RE RC

  39. io icsh AOL 1+AOLb Acsh =Gcsh + Gcsh bcsh fwd ___ _______ hfe 1+hfe RE/(RE +RS+rb+rp) RE RE +RS+rb+rp Acsh= -1 ____________________ - ___________ 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit • 3) Noise gain Acsh for icsh. rb B C hfe ip ip io icsh rp E RS vs RE RC

  40. io vct Act =Dct ___ 1 RC Act= - ___ 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit • 4) Noise gain Act for vct. rb B C hfe ip ip rp E RS io vs vct /RC RE RC

  41. vn s (ibf +ibsh)Abf As icsh Acsh As vct Act As vn s(t) = vst +vbt +vet + + + __________ _______ _____ (RSbE+rp)2 hfe2 1 RC As2 +icsh2 + 4kT ________ _____ vn s2(f) = 4kTRSbE+(ibf 2+ibsh2)RSbE2 0 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit • 5) Total input noise vs. time, vn s. rb B C hfe ip ip io icsh rp RS ibf ibsh E vs RE RC RSbE =RS +rb+RE

  42. rb en in E RE (RbE+rp)2 hfe2 en2 =en s2 =4kTRbE+(ibf 2+ibsh2) RbE2+ icsh2 RS = RS =0 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit 6) en- in noise model. B C hfe ip ic ip rp RC E RS vs (1+hfe)RE RbE= rb +RE en s2 RS2 icsh2 hfe2 in2 ==ibf 2+ibsh2+

  43. 0 1.4 1.2 -0.1 en s norm. dB en s norm. dB 1.0 hfe=104 -0.2 0.8 hfe=103 0.6 hfe=102 -0.3 0.4 -0.4 0.2 0 -0.5 102 103 104 0.1 1 10 IC /IC opt hfe hfeVT (1+ hfe )0.5RSbE IC opt= (1+hfe )0.5 (1+hfe )0.5-1 vn s min2=4kTRSbE 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit 7) Minimizing CE noise. rb= 100 RS= 200 RE= 200 ibf 2= 0 vbt2= 4kTrb vet2= 4kTRE ibsh2= 2qIC /bicsh2= 2qIC 2 RSbE2 hfe RSbE+hfeVT /IC hfe vn s2= 4kTRSbE+ 2qIC +2qIC Reference: [7]

  44. Next lecture Next lecture:

More Related