1 / 46

New Spectral Classification Technique for Faint X-ray Sources: Quantile Analysis

New Spectral Classification Technique for Faint X-ray Sources: Quantile Analysis. JaeSub Hong Spring, 2006 J. Hong, E. Schlegel & J.E. Grindlay, ApJ 614, 508, 2004 The quantile software (perl and IDL) is available at http://hea-www.harvard.edu/ChaMPlane/quantile.

gbiddle
Download Presentation

New Spectral Classification Technique for Faint X-ray Sources: Quantile Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. New Spectral Classification Technique for Faint X-ray Sources: Quantile Analysis JaeSub Hong Spring, 2006 J. Hong, E. Schlegel & J.E. Grindlay, ApJ 614, 508, 2004 The quantile software (perl and IDL) is available at http://hea-www.harvard.edu/ChaMPlane/quantile.

  2. Extracting Spectral Properties or Variations from Faint X-ray sources • Hardness Ratio • HR1 =(H-S)/(H+S) or HR2 = log10(H/S) • e.g. S: 0.3-2.0 keV, • H: 2.0-8.0 keV • X-ray colors • C21 = log10(C2/C1) : soft color • C32 = log10(C3/C2) : hard color • e.g. C1: 0.3-0.9 keV, • C2: 0.9-2.5 keV, • C3: 2.5-8.0 keV

  3. Hardness Ratio • Pros • Easy to calculate • Require relatively low statistics (> 2 counts) • Direct relation to Physics (count  flux) • Cons • Different sub-binning among different analysis • Many cases result in upper or lower limits • Spectral bias built in sub-band selection

  4. Hardness Ratio • Pros • Easy to calculate • Require relatively low statistics (> 2 counts) • Direct relation to Physics (count  flux) • Cons • Different sub-binning among different analysis • Many cases result in upper or lower limits • Spectral bias built in sub-band selection e.g. simple power law spectra (PLI = ) on an ideal (flat) response S band : H band ~ 0  ~ 1  ~ 2 0.3 – 4.2 : 4.2 – 8.0 keV = 1:1 4:1 27:1 0.3 – 1.5 : 1.5 – 8.0 keV = 1:5 1:1 5:1 0.3 – 0.6 : 0.6 – 8.0 keV = 1:24 1:4 1:1

  5. Hardness Ratio • Pros • Easy to calculate • Require relatively low statistics (> 2 counts) • Direct relation to Physics (count  flux) • Cons • Many cases result in upper or lower limits • Spectral bias built in sub-band selection e.g. simple power law spectra (PLI = ) on an ideal (flat) response S band : H band Sensitive to (HR~0) 0.3 – 4.2 : 4.2 – 8.0 keV ~ 0 0.3 – 1.5 : 1.5 – 8.0 keV ~ 1 0.3 – 0.6 : 0.6 – 8.0 keV ~ 2

  6. X-ray Color-Color Diagram C21 = log10(C2/C1) C32 = log10(C3/C2) C1 : 0.3-0.9 keV C2 : 0.9-2.5 keV C3 : 2.5-8.0 keV Power-Law :  & NH Intrinsically Hard More Absorption

  7. X-ray Color-Color Diagram • Simulate 1000 count sources with spectrum at the grid nods. • Show the distribution (68%) of color estimates for each simulation set. • Very hard and very soft spectra result in wide distributions of estimates at wrong places.

  8. X-ray Color-Color Diagram • Total counts required in the broad band(0.3-8.0 keV)to have at least one count in each of three sub-energy bands • Sensitive to C21~0 and C32~0

  9. Hardness ratio & X-ray colors • Use counts in predefined sub-energy bins. • Count dependent selection effect • Misleading spacing in the diagram

  10. Hardness ratio & X-ray colors • Use counts in predefined sub-energy bins. • Count dependent selection effect • Misleading spacing in the diagram e.g. simple power law spectra (PLI = ) on an ideal (flat) response S band,H band Sensitive to Median 0.3 – 4.2,4.2 – 8.0 keV ~ 0 4.2 keV 0.3 – 1.5,1.5 – 8.0 keV ~ 1 1.5 keV 0.3 – 0.6,0.6 – 8.0 keV ~ 2 0.6 keV

  11. How about Quantiles? Search energies that divide photons into predefined fractions. : median, terciles, quartiles, etc e.g. simple power law spectra (PLI = ) on an ideal (flat) response S band,H band Sensitive to Median 0.3 – 4.2,4.2 – 8.0 keV ~ 0 4.2 keV 0.3 – 1.5,1.5 – 8.0 keV ~ 1 1.5 keV 0.3 – 0.6,0.6 – 8.0 keV ~ 2 0.6 keV

  12. Quantiles • Quantile Energy (Ex%) andNormalized Quantile (Qx) • x% of total counts at E < Ex% • Qx= (Ex%-Elo) / (Elo-Eup), 0<Qx<1 • e.g. Elo = 0.3 keV, Eup=8.0 keV in 0.3 – 8.0 keV • Median (m=Q50) • Terciles (Q33, Q67) • Quartiles (Q25, Q75)

  13. Quantiles • Low count requirements for quantiles: • spectral-independent • 2 counts for median • 3 counts for terciles and quartiles • No energy binning required • Take advantage of energy resolution • Optimal use of information

  14. Hardness Ratio HR1 = (H-S)/(H+S) -1 < HR1 < 1 HR2 = log10(H/S) - < HR2 <   HR2 = log10[ (1+HR1)/(1-HR1) ] Median m=Q50= (E50%-Elo)/(Eup-Elo) 0 < m < 1 qDx= log10[ m/(1-m) ] - < qDx < 

  15. Hardness ratio simulations (no background) S:0.3-2.0 keV H:2.0-8.0 keV Fractional cases with upper or lower limits

  16. Hardness Ratio vs Median (no background) Hardness Ratio 0.3-2.0-8.0 keV Median 0.3-8.0 keV

  17. Hardness Ratio vs Median (source:background = 1:1) Hardness Ratio 0.3-2.0-8.0 keV Median 0.3-8.0 keV

  18. Quantile-based Color-Color Diagram (QCCD) E50%= • Quantiles are not independent • m=Q50 vs Q25/Q75 • Power-Law :  & NH • Proper spacing in the diagram • Poor man’s Kolmogorov -Smirnov (KS) test More Absorption Intrinsically Hard An ideal detector 03-8.0 keV

  19. Overview of the QCCD phase space

  20. Color estimate distributions(68%) by simulations for1000 count sources E50%= Quantile Diagram 0.3-8.0 keV Conventional Diagram 0.3-0.9-2.5-8.0 keV

  21. Realistic simulations E50%= ACIS-S effective area & energy resolution An ideal detector

  22. 100 count source with no background Quantile Diagram 0.3-8.0 keV Conventional Diagram 0.3-0.9-2.5-8.0 keV

  23. 100 source count/ 50 background count Quantile Diagram 0.3-8.0 keV Conventional Diagram 0.3-0.9-2.5-8.0 keV

  24. 50 count source without background Quantile Diagram 0.3-8.0 keV Conventional Diagram 0.3-0.9-2.5-8.0 keV

  25. 50 source count/ 25 background count Quantile Diagram 0.3-8.0 keV Conventional Diagram 0.3-0.9-2.5-8.0 keV

  26. Energy resolution and Quantile Diagram • Elo = 0.3 keV • Ehi = 8.0 keV • E/E = 10% at 1.5 keV • E50%: from Elo+ f Elo • to Ehi– f Ehi • from ~ 0.4 keV • to ~ 7.8 keV

  27. Energy resolution and Quantile Diagram • Elo = 0.3 keV • Ehi = 8.0 keV • E/E = 20% at 1.5 keV • E50%: from Elo+ f Elo • to Ehi– f Ehi • from ~ 0.4 keV • to ~ 7.6 keV

  28. Energy resolution and Quantile Diagram • Elo = 0.3 keV • Ehi = 8.0 keV • E/E = 50% at 1.5 keV • E50%: from Elo+ f Elo • to Ehi– f Ehi • from ~ 0.5 keV • to ~ 7.0 keV

  29. Energy resolution and Quantile Diagram • Elo = 0.3 keV • Ehi = 8.0 keV • E/E = 100% at 1.5 keV • E50%: from Elo+ f Elo • to Ehi– f Ehi • from ~ 0.7 keV • to ~ 6.5 keV

  30. Energy resolution and Quantile Diagram • Elo = 0.3 keV • Ehi = 8.0 keV • E/E = 200% at 1.5 keV • E50%: from Elo+ f Elo • to Ehi– f Ehi • from ~ 1.0 keV • to ~ 6.0 keV

  31. Energy resolution and Quantile Diagram • Elo = 0.3 keV • Ehi = 8.0 keV • E/E = 500% at 1.5 keV • E50%: from Elo+ f Elo • to Ehi– f Ehi • from ~ 1.2 keV • to ~ 5.0 keV

  32. Energy resolution and Quantile Diagram E/E = 10% at 1.5 keV E/E = 100% at 1.5 keV

  33. Sgr A* (750 ks Chandra)

  34. Sgr A* (750 ks Chandra)

  35. Sgr A* (750 ks Chandra)

  36. Sgr A* (750 ks Chandra)

  37. Sgr A* (750 ks Chandra)

  38. Swift XRT Observation of GRB Afterglow • GRB050421 : Spectral softening with ~ constant NH • GRB050509b : Short burst afterglow, softer than the host Quasar

  39. Score Board • Spectral Bias • Stability • Sub-binning • Phase Space • Sensitivity • Energy Resolution • Physics • Quantile • Analysis • None • Good • No Need • Meaningful • Evenly Good • Sensitive • Indirect • X-ray Hardness • Ratio or Colors • Yes • Upper/Lower Limits • Required • Misleading? • Selectively Good • Insensitive • Direct

  40. Future Work • Find better phase spaces. • Handle background subtraction better. • Find better error estimates: half sampling, etc. • Implement Bayesian statistics?

  41. Conclusion: Quantile Analysis • Stable spectral classification with limited statistics • No energy binning required • Take advantage of energy resolution • Quantile-based phase space is a good indicator • of spectral sensitivity of the detector. • The basic software (perl and IDL) is available at • http://hea-www.harvard.edu/ChaMPlane/quantile.

  42. Quantile Error Estimates • In principle, by simulations: • slow and redundant • Maritz-Jarrett Method : bootstrapping • Q25 & Q75: not independent • MJ overestimates by ~10% • 100 count source: • consistent within ~5%

  43. Quantile Error Estimates by Maritz-Jarrett Method • PL:  =2, NH=5x1021cm-2 • >~30 count : within ~ 10% • <~30 count : overestimate up to ~50% • MJ requires • 3 counts for Q50 • 5 counts for Q33, Q67 • 6 counts for Q25, Q75 mj/sim

More Related