1 / 41

Coulomb final state interactions and modelling B-E correlations

Coulomb final state interactions and modelling B-E correlations. O.Utyuzh. The Andrzej Sołtan Institute for Nuclear Studies (SINS) , Warsaw, Poland. Correlation s: quantum statistics (QS). p 1. BE enhancement. x 1. x 2. p 2. - Gamov factor. point-like source only.

gefen
Download Presentation

Coulomb final state interactions and modelling B-E correlations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Coulomb final state interactions and modelling B-E correlations O.Utyuzh The Andrzej Sołtan Institute for Nuclear Studies (SINS), Warsaw, Poland

  2. Correlations: quantum statistics (QS) p1 BE enhancement x1 x2 p2 O.Utyuzh/SINS

  3. - Gamov factor point-like source only Correlations: QS+Coulomb FSI p1 BE+FSIenhancement BE enhancement x1 x2 p2 O.Utyuzh/SINS

  4. NA49 Collab., Eur. Phys. J. C2(1998) 661 *G. Baym and P. Braun-Munzinger, Nucl. Phys.A610 (1996) 286c. O.Utyuzh/SINS

  5. - determined from a fit of the - Gamov factor NA49 Collab., nucl-ex/9808006, presented at CRIS’98 O.Utyuzh/SINS

  6. halo core momentum resolution Core-Halo model* direct direct short-lived sources short-lived sources long-lived sources long-lived sources *S.Nickerson, T.Csörgő and D.Kiang, Phys.Rev. C57 (1998) 3251 O.Utyuzh/SINS

  7. Core-Halo model (Coulomb FSI)* proposed byYu.M. Sinyukov et al., Phys. Lett.B432 (1998) 248 adopted byCERES Collab., Nucl. Phys.A714 (2003) 124 HALO CORE Integration over Gaussian source of 5 fm size* *G. Baym and P. Braun-Munzinger, Nucl. Phys.A610 (1996) 286c. O.Utyuzh/SINS

  8. Bertsch-Pratt HBT radius parameters CERES Collab., Nucl. Phys.A714 (2003) 124 no Coulomb repulsion full Coulomb strength partial Coulomb repulsion with The inclusion of (kT) into the Coulomb termK’ accounts for the apparent depletion of λ due to the finite momentumresolution and assures the appropriate scaling of the Coulomb correction. partial Coulomb repulsion with kT dependent reduction of λdue to finite momentumresolution Rout and correspondingly Rout/Rside are very sensitive tothe procedureemployed O.Utyuzh/SINS

  9. STAR Collab.,Phys. Rev.C71 (2004) 044906 standard dilution Under assumption f=λ(λ is the fraction of primary pions): ROincreasesby 10-15% λdecreases by 10-15% Bowler-Sinyukov similar to the values for dilution procedure Rout and correspondingly Rout/Rside are very sensitive tothe procedureemployed O.Utyuzh/SINS

  10. Many of relatively long-lived particles (e.g.), which have a Bose-Einstein interference too narrow to be resolved by experiment, also have a Coulomb interaction. introduce a new parameter,, todecouple the Coulomb and Bose-Einstein fractions. PHENIX Collab., Phys. Rev. Lett.93 (2004) 152302 HALO CORE HALO CORE Coulomb only O.Utyuzh/SINS

  11. PHENIX Collab.,Phys. Rev. Lett. 93 (2004) 152302 Full Coulomb correction by S. Pratt, Phys. Rev.D33 (1986) 72 full corrected uncorrected (1) (2) O.Utyuzh/SINS

  12. PHENIX Collab.,Phys. Rev. Lett.93 (2004) 052302 O.Utyuzh/SINS

  13. PHOBOS Collab., nucl-ex/0409001 HALO CORE O.Utyuzh/SINS

  14. PHOBOS Collab.,nucl-ex/0409001 STAR PHOBOS PHENIX results showed no significant change using either correction method. If λ=1, all methods are equivalent O.Utyuzh/SINS

  15. Gideon Alexander,Rep.Prog.Phys.66(2003), 481 The Coulomb correction to the BEC correlation function (a) for two identical charged-pion systems as a function of Q2 and (b) for the three charged pion systems as a function of Q3. n – particle Coulomb O.Utyuzh/SINS

  16. OPAL Collab.,Eur.Phys.J.C5(1998) 239 w/o Coulomb w/ Coulomb O.Utyuzh/SINS

  17. * E.O.Alt, T.Csörgő, B.Lörstad and J.Schmidt-Sørensen,Phys.Lett.B458 (1999) 407 E.O.Alt, T.Csörgő, B.Lörstad and J.Schmidt-Sørensen, Eur. Phys. J.C13 (2000) 663 O.Utyuzh/SINS

  18. STAR Collab.,Phys. Rev.C71 (2004) 044906 The “central” Coulomb potential p1 p`1 - x1 The Coulomb interaction between the outgoing charged pions and the residual positive charge in the source is negligible D. Hardtke and T. J. Humanic, Phys. Rev.C57 (1998) 3314 x2 - p`2 p2 *G. Baym and P. Braun-Munzinger, Nucl. Phys.A610 (1996) 286c. O.Utyuzh/SINS

  19. change MC output to simulate proper behaviour Monte-Carlo event generators (MC) O.Utyuzh/SINS

  20. Numerical modeling of BEC (a)Momenta shifting* *L.Lönblad, T.Sjöstrand, Eur.Phys.J. C2 (1998) 165 O.Utyuzh/SINS

  21. Numerical modeling of BEC (a)Momenta shifting* *L.Lönblad, T.Sjöstrand, Eur.Phys.J. C2 (1998) 165 O.Utyuzh/SINS

  22. for eachEievent one should take Ejevents Numerical modeling of BEC (b)weighting of events* j i events recounting *K.Fiałkowski,R.Wit,J.Wosiek, Phys.Rev. D57(1998) 0940013 O.Utyuzh/SINS

  23. non-identicalVSidenticalBoltzmannVSBose-Einstein Quantum statistics GEOMETRICAL symmetrization* BOSE-EINSTEIN * - E.M.Purcell, Nature174 (1956) 1449 - A. Giovannini and H.B.Nielsen, Proc. Of the IV Int. Symp. On Mult. Hadrodyn., Pavia 1973 - K.Zalewski, Nucl. Phys. Proc. Suppl. 74 (1999) 65 - S.Pratt, in “Quark-Gluon Plasma”, ed.R.C.Hwa (World Scientific Oubl. Co, Singaoure, 1999), p.700 O.Utyuzh/SINS

  24. Boltzmann particles production Numerical modeling of BEC EXAMPLE O.Utyuzh/SINS

  25. add particles to cells until firstfailure Numerical modeling of BEC elementary emitting cells (EEC) O.Utyuzh/SINS

  26. smearing particleenergy inthecells Numerical modeling of BEC O.Utyuzh/SINS

  27. Coulomb Final State Interaction (FSI) Correlate x·p according to instead of under condition model (3D) p-Space x-Space symetrization x·p-correlations 3D-model 1D-model O.Utyuzh/SINS

  28. W - dependence O.Utyuzh/SINS

  29. T - dependence O.Utyuzh/SINS

  30. P0 - dependence O.Utyuzh/SINS

  31.  - dependence O.Utyuzh/SINS

  32. O.Utyuzh/SINS

  33. Coulomb Final State Interaction (FSI) Correlate x·p according to instead of O.Utyuzh/SINS

  34. Back-up Slides O.Utyuzh/SINS

  35. H. Heiselberg,Phys.Lett.B379(1996) 27 Resonance contributions to the correlation function as function of Qout Curves include successively direct pions, ρ, Δ, K∗, Σ∗, ω and η+ η′ + K0S + Σ + ... from RQMD O.Utyuzh/SINS

  36. D.H.Boal, C.Gelbke and B.K.Jennings Rev. Mod.Phys.62 (1990) 553 Charged-particle multiplicity (Nch) dependence of the correlation function for reaction ppbar→2π+X at sqrts=630 GeV. O.Utyuzh/SINS

  37. MC particles production cellformation untilfirst failure example phasespace (1D) phasespace (1D) phasespace (1D) smearing particleenergy inthecells model (momenta correlations) O.Utyuzh/SINS

  38. output input phasespace (1D) phasespace (1D) phasespace (1D) model (1D) O.Utyuzh/SINS

  39. Clan model* Clan1 correlated Hadronic Source Clan2 correlated Independent production Clan3 correlated *L. Van Hove and A. Giovannini, XVII Int. Symp. On Mult. Dyn., ed. by M.Markitan (World Scientific, Singapore 1987), p. 561 O.Utyuzh/SINS

  40. Clan model* Clan1 correlated Hadronic Source Clan2 correlated Independent production Clan3 correlated *L. Van Hove and A. Giovannini, XVII Int. Symp. On Mult. Dyn., ed. by M.Markitan (World Scientific, Singapore 1987), p. 561 O.Utyuzh/SINS

  41. Clan model …(MD) Quantum statistics* Negative Binominal( NB ) multiplicity distribution Pólya-Aeppli ( PA ) multiplicity distribution * J.Finkelstein, Phys. Rev. D37 (1988) 2446 and Ding-wei Huang, Phys. Rev. D58 (1998) 017501 O.Utyuzh/SINS

More Related