320 likes | 549 Views
Modelling cell-extracellular matrix interactions. Luigi Preziosi. Luigi.preziosi@polito.it calvino.polito.it/~preziosi. (degenerate parabolic). Tumours as multicomponent tissues. Dipartimento di Matematica. Dipartimento di Matematica. Mechanics in Multiphase Models. Growth. Stress.
E N D
Modelling cell-extracellular matrix interactions Luigi Preziosi Luigi.preziosi@polito.it calvino.polito.it/~preziosi
(degenerate parabolic) Tumours as multicomponent tissues Dipartimento di Matematica Dipartimento di Matematica
Mechanics in Multiphase Models Growth Stress Interaction force Mechanical effects in: (P. Friedl, K. Wolf) http://jcb.rupress.org/cgi/content/full/jcb.200209006/DC1 Dipartimento di Matematica
Cell-ECM interaction • Baumgartner et al. PNAS97 (2000) Dipartimento di Matematica Dipartimento di Matematica
Human Brain Tumor 35 pN Sun et al. Biophys J.89 (2005)
Interactionforce Adhesionstrength mcm Darcy's-type law scm vrel Modelling the interaction between cells and ECM - if cells are not pulled strong enough they stick to the ECM - otherwise they move relative to the ECM • L.P. & A. Tosin, J. Math. Biol.58, 625-656, (2009) Dipartimento di Matematica
Interactionforce Adhesionstrength Modelling the interaction between cells and ECM - if cells are not pulled strong enough they they stick to the ECM - otherwise they move relative to the ECM Dipartimento di Matematica
Modelling the interaction between cells and ECM G. Vitale & L.P., M3AS, (2010)
v Modelling the interaction between cells and ECM Contribution due to porosity and tortuosity (in 3D) Contribution due to adhesion Dipartimento di Matematica
Modelling the adhesive contribution Evolution equation In the limit: bond age << travel time Breaking length << cell diameter Dipartimento di Matematica
If z z0 F F0 Modelling the adhesive contribution If z z0 F Dipartimento di Matematica
z mD+mad mad F Fm FM Modelling the adhesive contribution Dipartimento di Matematica
Different clones have different thresholds Different invasiveness moves slows down stops Some concluding remarks Adhesion depends on the amount of ECM,
Modelling the interaction between cells and ECM Volume ratio Interfacial force Dipartimento di Matematica
Cellular Potts Model Dipartimento di Matematica
Sub-Cellular Components in CPM M. Scianna M. Scianna & L.P., Multiscale Model. Simul. (2012) Dipartimento di Matematica
Moving cell morphology with CPM Dipartimento di Matematica
Effect of adhesion in 2D Palecek et al., Nature385, 537-540 (1997)
Effect of pore size M. Scianna, L.P., & K. Wolf, Biosci. Engng. (2012)
Effect of deformability Varying fiber elasticity Varying nucleus elasticity
Direct and Inverse Problem Dipartimento di Matematica
Cell Traction V. Peschetola, V. Laurent, A. Duperray, L. Preziosi, D. Ambrosi, C. Verdier, Comp. Methods Biomech. Biomed. Engng. 14, 159-160 (2011). Dipartimento di Matematica time
Traction on a stiff gel Ambrosi, Peschetola,Verdier SIAM J. Appl. Math, (2006) T24 cancer cells Dipartimento di Matematica
Traction on softer gel T24 cancer cells • Conclusions • minor traction ability than fibroblasts • larger forces on stiffer gels Dipartimento di Matematica
Traction in 3D G. Vitale, D. Ambrosi, L.P., J. Math. Anal. Appl. 395, 788-801 (2012). Inverse Problems 28, 095013 (2012) : f→u Penalty function for the minimization problem Self-adjoint problem Dipartimento di Matematica
Traction in 3D Dipartimento di Matematica
D. Ambrosi A. Tosin G. Vitale V. Peschetola A. Chauviere C. Verdier S. Astanin C. Giverso M. Scianna