110 likes | 123 Views
Explore key concepts in quantum physics with detailed answers to thought-provoking questions about particle behavior, momentum, wavelength, and uncertainties. Enhance your understanding of fundamental principles in quantum mechanics.
E N D
Q39.1 In order for a proton to have the same momentum as an electron, 1. the proton must have a shorter de Broglie wavelength than the electron 2. the proton must have a longer de Broglie wavelength than the electron 3. the proton must have the same de Broglie wavelength as the electron 4. not enough information given to decide
A39.1 In order for a proton to have the same momentum as an electron, 1. the proton must have a shorter de Broglie wavelength than the electron 2. the proton must have a longer de Broglie wavelength than the electron 3. the proton must have the same de Broglie wavelength as the electron 4. not enough information given to decide
Q39.2 An electron is accelerated from rest by passing through a voltage Vba. What happens to the wavelength of the electron (assumed to be nonrelativistic) if the value of Vba is doubled? 1. the wavelength increases by a factor of 2 2. the wavelength increases by a factor of 21/2 3. the wavelength becomes (1/2)1/2 as great 4. the wavelength becomes 1/2 as great 5. none of the above
A39.2 An electron is accelerated from rest by passing through a voltage Vba. What happens to the wavelength of the electron (assumed to be nonrelativistic) if the value of Vba is doubled? 1. the wavelength increases by a factor of 2 2. the wavelength increases by a factor of 21/2 3. the wavelength becomes (1/2)1/2 as great 4. the wavelength becomes 1/2 as great 5. none of the above
Q39.3 A beam of electrons passes through a narrow slit. In order for a particular electron to land at the center of the resulting diffraction pattern, it must pass 1. through the center of the slit 2. through the upper half of the slit 3. through the lower half of the slit 4. impossible to decide
A39.3 A beam of electrons passes through a narrow slit. In order for a particular electron to land at the center of the resulting diffraction pattern, it must pass 1. through the center of the slit 2. through the upper half of the slit 3. through the lower half of the slit 4. impossible to decide
Q39.4 An electron is free to move anywhere within a cube of copper 1 cm on a side. Compared to an electron within a hydrogen atom, the electron in copper 1. has a much smaller uncertainty in momentum 2. has a slightly smaller uncertainty in momentum 3. has the same uncertainty in momentum 4. has a slightly larger uncertainty in momentum 5. has a much larger uncertainty in momentum
A39.4 An electron is free to move anywhere within a cube of copper 1 cm on a side. Compared to an electron within a hydrogen atom, the electron in copper 1. has a much smaller uncertainty in momentum 2. has a slightly smaller uncertainty in momentum 3. has the same uncertainty in momentum 4. has a slightly larger uncertainty in momentum 5. has a much larger uncertainty in momentum
Q39.5 The thick green curve shows the real part of a particular wave function for a free particle. The quantum-mechanical state represented by this wave function 1. has definite momentum and definite energy 2. has definite momentum, but not definite energy 3. has definite energy, but not definite momentum 4. has neither definite energy nor definite momentum
A39.5 The thick green curve shows the real part of a particular wave function for a free particle. The quantum-mechanical state represented by this wave function 1. has definite momentum and definite energy 2. has definite momentum, but not definite energy 3. has definite energy, but not definite momentum 4. has neither definite energy nor definite momentum