1 / 19

Brief Overview of Stellar Evolution

Brief Overview of Stellar Evolution. Pre-Main Sequence (really short time): The phase in which a protostar forms out of a cloud of gas that is slowly contracting under gravity Main Sequence (long time):

geona
Download Presentation

Brief Overview of Stellar Evolution

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Brief Overview of Stellar Evolution • Pre-Main Sequence (really short time): The phase in which a protostar forms out of a cloud of gas that is slowly contracting under gravity • Main Sequence (long time): The phase in which a star-wannabe becomes hot enough to initiate and maintain nuclear fusion of hydrogen in its core to become a true star. • Post-Main Sequence (sorta short time): H-burning ceases, and other kinds of burning may occur, but the star is destined to become a White Dwarf, Neutron Star, or Black Hole

  2. Observational Clues from the Solar System: Orbits of planets lie nearly in ecliptic plane The Sun’s equator lies nearly in the ecliptic Inner planets are rocky and outer ones gaseous All planets orbit prograde Sun rotates prograde Planet orbits are nearly circular Big moons orbit planets in a prograde sense, with orbits in equatorial plane of the planet Rings of Jovians in equatorial planes S.S. mass in Sun, but angular momentum in planet orbits Formation of Stars and Planets

  3. Accretion and Sub-Accretion

  4. Collection of Planetesimals into Planets

  5. Solar Nebula Theory Immanuel Kant (German): 1775, suggested that a rotating cloud that contracts under gravity could explain planetary orbit characteristics Basic Modern View – • Oldest lunar rocks ~4.6 Gyr • Planets formed over brief period of 10-100 Myr • Gas collects into “disk”, and cools leading to formation of condensates • Growth of planetesimals by collisions • Build up minor bodies and small rocky worlds • Build up Jovian cores that sweep up outer gases

  6. If an interstellar cloud contracts to become a star, it is due to which force? a) electromagnetic b) nuclear c) gravitational d) centrifugal Share Question

  7. The Chaotic Early Solar System • Recent computer models are challenging earlier views that planets formed in an orderly way at their current locations • These models suggest that the jovian planets changed their orbits substantially, and that Uranus and Neptune could have changed places • These chaotic motions could also explain a ‘spike’ in the number of impacts in the inner solar system ~3.8 billion years ago The Moon and terrestrial planets were bombarded by planetesimals early in solar system history.

  8. Cosmic Billiards • The model predicts: • After formation, giant planet orbits were affected by gravitational ‘nudges’ from surrounding planetesimals • Jupiter and Saturn crossed a 1:2orbital resonance (the ratio of orbital periods), which made their orbits more elliptical. This suddenly enlarged and tilted the orbits of Uranus and Neptune • Uranus / Neptune cleared away the planetesimals, sending some to the inner solar system causing a spike in impact rates 100 Myr 880 Myr 20 AU planetesimals 883 Myr ~1200 Myr N U S J The early layout of the solar system may have changed dramatically due to gravitational interactions between the giant planets. Note how the orbits of Uranus and Neptune moved outwards, switched places, and scattered the planetesimal population.

  9. The Big Picture • The current layout of our solar system may bear little resemblance to its original form • This view is more in line with the “planetary migration” thought to occur even more dramatically in many extrasolar planet systems • It may be difficult to prove or disprove these models of our early solar system. The many unexplained properties of the nature and orbits of planets, comets and asteroids may provide clues. Artist’s depiction of Neptune orbiting close to Jupiter (courtesy Michael Carroll)

  10. Bode’s Law

  11. Radiative Equilibrium

  12. Global Temperatures of Planets

  13. Share QuestionAs the Sun, changes how will we?

  14. Density and Composition Ex: Moon – r(surf) ~ 2800 and <r> ~ 3300 Earth – r(surf) ~ 2800 but <r> ~ 5500

More Related