200 likes | 351 Views
The Irradiated and Stirred ISM of Active Galaxies. Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON), Dominik Schleicher (Leiden/ESO), Ralf Klessen (Heidelberg) Juan Pablo Perez Beaupuits (Groningen).
E N D
The Irradiated and Stirred ISM of Active Galaxies Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON), Dominik Schleicher (Leiden/ESO), Ralf Klessen (Heidelberg) Juan Pablo Perez Beaupuits (Groningen)
PDRs: 6 < E < 13.6 eV • Heating: Photo-electric emission from grains and cosmic rays • Cooling: Fine-structure lines like [OI] 63, 145; [CII] 158 μm and emission by H2, CO, H2O • 10 eV photon penetrates 0.5 mag of dust
XDRs: E > 1 keV • Heating: X-ray photo-ionization --> fast electrons; H and H2vibexcitation; UV emission (Ly α, Lyman-Werner) • Cooling: [FeII] 1.26, 1.64; [OI] 63; [CII] 158; [SiII] 35 μm; thermal H2vib; gas-dust • 1 keV photon penetrates 1022 cm-2 of NH
PDR (left) with n=105 cm-3 and G=103.5 • XDR with n=105 cm-3 and FX = 5.1 erg s-1 cm-3 • Note NH dependence H2, C+, C, CO, OH, H2O: FIR lines of species trace different regions
107 M๏BH at 3% Eddington forh G0=10 and 1-100 keV powerlaw of slope -1 (with 10% L) A comment on AGN: Relative Size PDR/XDR
MDRs: how about kinetics? • Mechanically Dominated Regions • Turbulent dissipation heats the gas, which leads to IR emission • UV only heats cloud surface • Cosmic rays also heat deep inside cloud, but strongly affect HCO+ • E.g., at T>100K: HNC + H HCN + H
Sources of Turbulence • YSOs • SNe • Sloshing motions (accretion) • Assume 1-10% efficiency through a turbulent cascade -> mechanical heating competes with normal CR heating for SF rates of 10 – 100 Mo/yr
g • E.g., P cygni profiles in Arp220: 100 km/s outflow (100 pc scale)
changes in high density tracers normal mechanical • temperature increases • E.g., HNC, HCN, HCO+ affected
Sample of ULIRGs • combined PV, SEST and literature • low density gas: CO(1-0) & CO(2-1) • high density gas: HCN(1-0), HNC(1-0), HCO+(1-0), CN(1-0), CN(2-1), CS(3-2) • total of 117 sources, but incomplete: • 110 CO(1-0), but 32 CO(2-1) • 84 HCN • only 33 have HCN, HNC and HCO+ • Note: single dish, so integrated properties
Relation with LFIR • relation LFIR – Lmolecule reflects Kennicutt-Schmidt laws: ΣSFR~ Σgasα , α=1.4 • Krumholz & Thompson (2007): • if ncrit < nave: α ≈ 1.5 (KS law) • if ncrit > nave: α ≤ 1 • Note: slope in fits = 1/α
A few fits 2e3 3e6 4e5 1e4 3e6 2e7 CO(1-0) α~ 1.4 CO(2-1) closer to 1 Others α≤ 1; black squares OH-MM 2e5 1e6
Relation with LFIR • Kennicutt-Schmidt laws: ΣSFR~ Σgasα , α=1.4 • Krumholtz & Thompson (2007): • if ncrit < nave: α ≈ 1.5 (K-S law) • if ncrit > nave: α ≤ 1 • Note: slope in fits = 1/α • Our data follow the K&T predictions, but can we learn more?
Toy model: starburst that decays; deplete dense gas and go from SF -> SNe
For some ULIRGs, dense gas tracers that correlate with IR may trace more SN than UV exposure, see Loenen et al. (2008)
Lowering the metallicity to 1% Zo: CO no longer dominant molecular gas coolant
Summary • In addition to fine structure lines, CO, HCN, HNC, HCO+ lines are good diagnostics to get to SF properties • Turbulence (and cosmic rays) matter!
so IR response of the ISM may not be tracing star formation directly; [CII] en [CI] lines probe this directly
How about CRs? • PDR model with CR rate = 5x10-15 s-1; so SN rate for ~100 M0/yr • Note small changes in C, OH and H2O
In fact, CRs can dominate the thermodynamics of molecular gas for star formation rates > 100 Mo/yr; think of Arp220