1 / 31

Commonsense Computing

Commonsense Computing. 상식을 갖춘 인공지능. This slide is prepared by MIT Media Lab Commonsense Computing Group and Hyemin Chung. 상식을 갖춘 인공지능 ?. From http://labcast.media.mit.edu/ MIT Media Lab LabCAST #37. 사람이 컴퓨터에 맞추는게 아니라 컴퓨터가 사람에 맞춘다. 사람이 컴퓨터가 알아들을 수 있게 고민하는게 아니라 컴퓨터가 사람이 원하는 바를 알아듣는다.

Download Presentation

Commonsense Computing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Commonsense Computing 상식을 갖춘 인공지능 This slide is prepared by MIT Media Lab Commonsense Computing Group and Hyemin Chung

  2. 상식을 갖춘 인공지능?

  3. From http://labcast.media.mit.edu/ MIT Media Lab LabCAST #37

  4. 사람이 컴퓨터에 맞추는게 아니라컴퓨터가 사람에 맞춘다

  5. 사람이 컴퓨터가 알아들을 수 있게고민하는게 아니라컴퓨터가 사람이 원하는 바를 알아듣는다

  6. 컴퓨터가 사람이 사는 세상을 이해하고그 이해를 바탕으로 활동한다

  7. 사람들의 상식을컴퓨터에게도 CommonsenseComputing

  8. 컴퓨터가 상식을 가지려면..? 사람이 상식을 익히는 방법.. 직접경험, 간접경험체험, 교육, 학교, 독서, TV.. 컴퓨터가 상식을 익히는 방법..

  9. OpenMindCommon Sense From http://openmind.media.mit.edu/ OpenMind Common Sense

  10. OpenMind Common Sense English Portuguese Korean Japanese Dutch Spanish Italian French 832937 233416 14946 9818 5055 99 98 14 2009년 7월 25일 현재

  11. 상식 데이터들은어떻게 처리하나요?

  12. ConceptNet Raw Assertion “ You make an apple pie by baking it .”

  13. ConceptNet Pattern Matching “ You make an apple pie by baking it .” (1) (2)

  14. ConceptNet Select Relation Normalize Normalize apple pie bake CreatedBy 현재 한국어를 포함한 동아시아 언어는 정규화를 하지 않고 있습니다.

  15. ConceptNet From http://conceptnet.media.mit.edu/ ConceptNet

  16. 좋다 쉽게 하지 못한다 쉽게 한다 싫다 AnalogySpace From http://analogyspace.media.mit.edu/ AnalogySpace

  17. AnalogySpace • Good & Bad 동영상 • Business 동영상 From http://analogyspace.media.mit.edu/ AnalogySpace

  18. 토끼 금속성이다 개 토스터 고양이 AnalogySpace

  19. 토끼 병아리 개 양 햄스터 토스터 고양이 AnalogySpace

  20. Blending From http://analogyspace.media.mit.edu/ AnalogySpace

  21. Others • LifeNet EventNet ShapeNet StoryNet Image from http://neuromin.de/rct/lifenet.html LifeNet: FIrst-Person Commonsense

  22. 어디에 어떻게 사용하나요?

  23. Roboverse From http://csc.media.mit.edu/pages/roboverse/ Commonsense Computing Initiative @ MIT Media Lab

  24. Emotus Ponens- Textual Affect Sensing From http://agents.media.mit.edu/ MIT MediaLab: Software Agents

  25. Multi-CulturalBridging From http://globalmind.media.mit.edu GlobalMind

  26. Roadie From http://labcast.media.mit.edu/ MIT Media Lab LabCAST #37

  27. WHAT AM I GONNA WEAR TODAY? From http://web.media.mit.edu/~edward/ Edward Shen: What Am I Gonna WEAR Today

  28. Predictive Text Entryand Voice Recognition From http://agents.media.mit.edu/ MIT MediaLab: Software Agents

  29. Anticipating User Tasks- Calendar From http://agents.media.mit.edu/ MIT MediaLab: Software Agents

  30. Goal-Oriented UI for Personalized Semantic Search From http://agents.media.mit.edu/ MIT MediaLab: Software Agents

  31. Thank you • Related Sites • http://xnet.media.mit.edu/ • http://conceptnet.media.mit.edu/ • http://analogyspace.media.mit.edu/ • http://divisi.media.mit.edu/ • http://openmind.media.mit.edu/ • http://agents.media.mit.edu • Contacts • lieber@media.mit.edu • rspeer@mit.edu • havasi@brandeis.edu • peggychi@media.mit.edu • ence@media.mit.edu

More Related