1 / 7

Exponente

Exponente. POTENCIAS. Valor de la potencia. Base. Se lee “tres elevado a cuatro es ochenta y uno”. Si el exponente de una potencia es un número natural, significa que la base de la potencia se multiplica por sí misma tantas veces como el exponente la indica. 4 veces. 3 veces. exponente.

gerik
Download Presentation

Exponente

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Exponente POTENCIAS Valor de la potencia Base Se lee “tres elevado a cuatro es ochenta y uno”

  2. Si el exponente de una potencia es un número natural, significa que la base de la potencia se multiplica por sí misma tantas veces como el exponente la indica. 4 veces 3 veces

  3. exponente base 23 cuatro veces Potencias de exponente natural mayor que 1 En la expresión 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 se repite el mismo factor 14 veces. 314 = 4.782.969 Para abreviar escribimos: 3 · 3 · 3 ·3 · 3 · 3 ·3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 = 314 314 es una potencia de base 3 y exponente 14: 314 La base es el factor que se repite. 234 = 23 · 23 · 23 · 23 El exponente indica el número de veces que se repite Las potencias de exponente 2 se llaman cuadrados: 52 es el cuadrado de 5. 103 = 1000 Las potencias de exponente 3 se llaman cubos: 103 es el cubo de 10. Otros ejemplos: (a) 2 ·2 · 2 ·2 · 2 ·2 · 2 ·2 · 2 ·2 = 210 = 1.024 (b) 65 = 6 · 6 · 6 · 6 · 6

  4. Actividad Responde y comenta las siguientes preguntas: • ¿Qué sucede con el signo del valor de la potencia si la base es positiva y el exponente es par? • ¿Qué sucede con el signo del valor de la potencia si la base es positiva y el exponente es impar? • ¿Qué sucede con el signo del valor de la potencia si la base es negativa y el exponente es par? • ¿Qué sucede con el signo del valor de la potencia si la base es negativa y el exponente es impar?

  5. Un número positivo. Un número negativo. Potencias de base un número negativo Si la base es un número negativo: (–3) · (–3) · (–3) · (–3) = (–3)4 = 81 Pero (–3) · (–3) · (–3) · (–3) · (–3) = (–3)5 = –243 Si el exponente es 4, resulta un número positivo porque hay un número par de signos negativos. Recuerda que (–) · (–) = + y que (–) · (–) · (–) = (–) Si el exponente es 5, resulta un número negativo porque hay un número impar de signos negativos. En general: Las potencias de base negativa y exponente par son positivas. Las potencias de base negativa y exponente impar son negativas. Otros ejemplos: (a) (–2)6 = 64 (b) (–4)2 = 16 Son positivas: (c) (–1)·(–1)·(–1)·(–1)·(–1)·(–1) )·(–1)·(–1) = (–1)8 = 1 (a) (–2)5 = –32 (b) (–4)3= –64 Son negativas: (c) (–1)·(–1)·(–1)·(–1)·(–1 )·(–1)·(–1) = (–1)7 = –1

  6. 27.000 (3 · 2 · 5)3 = 33 · 23 · 53 ¡Ojo! Es falso que (2+3)3 = 23 + 33 Potencia de un producto En la expresión (3 · 2 · 5)3 la base de la potencia es un producto. es la potencia de un producto Puede hacerse de dos modos: Modo 1º Efectuando antes el producto de la base y después la potencia: (3 · 2 · 5)3 = 303 Repitiendo la base tantas veces como indica el exponente: Modo 2º (3 · 2 · 5)3 = (3 · 2 · 5) ·(3 · 2 · 5) · (3 · 2 · 5) = (3 · 3 · 3) ·(2 · 2 · 2) · (5 · 5 · 5) = 33 · 23 · 53 Luego, La potencia de un producto es igual al producto de las potencias de los factores. Otros ejemplos: (b) (5 · (–4))3 = 53 · (–4)3 (a) (4 · 8)2 = 322 = 1024 = (–20)3 = 42 · 82 (c) (2+3)3 = 53 = 125, pero 23 + 33 = 8 + 27 = 35

More Related