140 likes | 256 Views
Vertikalblanding i den marginale issonen i Barentshavet Arild Sundfjord. OPNet-møte, Geilo, 06 Nov 2007. Motivasjon - turbulens Hvordan skal man representere turbulens i numeriske havmodeller?
E N D
Vertikalblanding i den marginale issonen i Barentshavet • Arild Sundfjord OPNet-møte, Geilo, 06 Nov 2007
Motivasjon - turbulens • Hvordan skal man representere turbulens i numeriske havmodeller? • Dissipasjon av turbulent kinetisk energi foregår på mindre skala enn det som er oppløst i vanlige 3D sirkulasjonsmodeller. • De turbulente blandingsprosessene må derfor representeres gjennom parameterisering, basert på fenomener på større skala som ER med i modellen. • Det er mange ulike parameteriseringer i bruk, med ulik grad av kompleksitet. Strømskjær, stratifisering, og gjerne en form for lengdeskala, brukes ofte til å beregne blandingskoeffisientene. • Hvor godt er turbulens representert i DIN modell? • Hva er effekter og konsekvenser av (den dårlige?) representasjonen? • Hvordan kan det forbedres? • Min motivasjon i CABANERA-prosjektet: effekt på biologi (prim.prod.)
SINMOD 3D baroclinic hydrodynamical model z-level model in regular Arakawa C-grid Standard setup uses Ri-number scheme 20 km large-scale model 4 km model (black) nested into 20 km 4 km/800 m grid (red) nested into 4 km 5-year spin-up period before simulation of the three project years 2003-2005. Model grid for experiments with two different vertical mixing schemes, and with increased horizontal and vertical resolution.
end of ice covered period Vinddrevet blanding
Også geografiske forskjeller (pga vannmasser og tidevann) Sesongutvikling Diffusjon i ”pyknoklinen” April 2004 August 2004
measured modelled mod. “pre-history” Sammenligning med observert turbulens/diffusjon Diffusivity Density St X • “Problemer” som ble identifisert: • For sterk og for dyp miksing i overflatelaget. • For svak turbulens i pyknoklinen. • For sterk blanding i ”dypvannet” og BBL. St XI St XIII
Sammenligning mellom Ri-tall-skjema og Mellor-Yamada Level 2.5
Numerical ocean modelling – possible improvements? Richardson number scheme: Adjustment of minimum and maximum diffusivities + initiation threshold Incorporate bottom boundary parameterization (e.g. KPP, Durski et al. 2004) Add wind-enhancement and under ice/ice-keel effect (Timmermann and Beckmann, 2004) Mellor-Yamada scheme: Length scale parameter adjustment (Burchard, 2001) Add wind-wave effect (Qiao et al., 2004)
ice edge South North Simuleringer med 800×800 m2 grid (=moro!) ice cover Warm Atlantic Water meets ice and cold Arctic Water “Jet” current flows westward along the ice edge Alternating up- and downwelling below ice edge Enhanced diffusivities down to >100 m depth
Oppsummering • The modelled development of diffusivity shows significant seasonal changes; high diffusivities during winter, minimum during the melting period, increasing in the ice-free season. • The model is able to reproduce individual episodes of strong wind and tides, as well as calm conditions, reasonably well. • Over time, the effect of surface mixing can extend too deep, the pycnocline may be too strong, and near-bottom mixing often homogenizes the deep part of the water column too effectively. • Both the Ri-number mixing scheme and the Mellor-Yamada scheme reproduce the general water mass distributions and seasonal development from winter to summer, but neither is found to reproduce the observed MIZ hydrography optimally. • Increasing the horizontal resolution from 4 km to 800 m allows for important ice edge processes to be resolved. • STORE effekter på primærproduksjon – f.eks. timing på våroppblomstring, effekter av vindepisoder (“pumping”) og total produksjon i løpet av året (regenereringssyklus).
Referanse A. Sundfjord, I. Ellingsen, D. Slagstad and H. Svendsen. Vertical mixing in the marginal ice zone of the Barents Sea – results from numerical model experiments. Deep Sea Research-II, in press.
Numerical ocean modelling- large scale features Ice cover at times of CABANERA cruises: July 2003 July 2004 May 2005 Satellite obs. Model What controls the variability of the large-scale heat budget – advection of water, or ice?