170 likes | 184 Views
Explore macro- and microanalysis, iterative algorithms, and technical applications in computational mechanics. Delve into homogenization techniques and mesh-free methods. Laboratory research includes materials like fire-clay brick and polyurethane insulation. Study two-scale problems and convergence analysis in modeling. References to recent papers provide further insights.
E N D
On the optimization of microstructurally motivated calculations in engineering mechanicsO optimalizaci mikrostrukturálně motivovaných výpočtů v inženýrské mechanice 4. matematický workshop20. října 2005 Jiří Vala (vala.j@fce.vutbr.cz) Ústav matematiky a deskriptivní geometrie Fakulty stavební VUT v Brně
Topics • Macro- and microanalysis in computational mechanics • Makro- a mikroanalýza ve výpočetní mechanice • Iterative algorithm for a model problem • Iterační algoritmus pro modelový problém • Generalizations and examples of technical applications • Zobecnění a příklady technických aplikací Keywords computations “from nano-scale particles to terrestrial bodies” homogenization techniques two-scale grids two-scale convergence classical FEM mesh-free methods
Structure of some building materials gas concrete fire-clay brick foam polyethylen 2 types of polyurethan-based insulation straw pannel Stramit Laboratory of Building Physics, Faculty of Civil Engineering,Brno University of Technology
Example:temperature field in the rubber-based insulation in certain part of the window construction 0.1 mm local thermal fluxes ANSYS-supported calculations
Microstructure of some advanced alloys Ni-Al-Cr-Ta alloy superaustenitic iron NICROFER Ni superalloy CMSX4 Bi-Sn-Zn alloy Institute of Physics of Materials, Academy of Sciences of the Czech Republic inBrno
Two basic approaches to two-scale problems: • some multiple levels of not necessarily nested grids considered (and some successive corrections needed) without deeper analysis of microstructural phenomena (Rech et al. 2003, Glowinski et al. 2005, …) • mathematical two-scale convergence (homogenization) theory (as generalization ofG-, H-, Γ-, … convergence)applied • (Nguetseng 1989, Allaire 1992, Holmbom 1997, ...)
Several concluding references to recent author’s papers • heat propagation in buildings: thermal insulation and accumulation J.V. & S.Šťastník, Modelling, July 2005 in Pilsen • diffusivephase transformation in substitutional alloys J.V. & J.Svoboda, Algoritmy, March 2005 in Podbanské J. Svoboda & J. V., Defect & Diffusion Forum 240 (2005), 647-653 J.V., Equadiff, July 2005 in Bratislava • convergence analysis for an iterative algorithm in case of classical FEM J. V., Numerical Methods in Computational Mechanics, August 2005 in Žilina J. V., Journal of Mechanical Engineering, to appear
Thank you for your attention. Questions and remarks are welcome. Supported by GA ČR, Reg. No. 103/05/0292 Better results are being prepared for the 5-th workshop (probably) in Brno in October 2006….