630 likes | 1.16k Views
Trost’s Palladium Catalysed Asymmetric Allylic Alkylation (Pd-AAA). Literature Meeting Charette’s group Miguel St-Onge October 9 th , 2007. Presentation. Trost and Palladium p - allyl complexes Stereochemistry of oxidative addition and nucleophilic attack Counter anion effects
E N D
Trost’s Palladium Catalysed Asymmetric Allylic Alkylation(Pd-AAA) Literature Meeting Charette’s group Miguel St-Onge October 9th, 2007
Presentation • Trost and Palladium • p-allyl complexes • Stereochemistry of oxidative addition and nucleophilic attack • Counter anion effects • Synvs anti complexes • Nucleophilic approach on allyl terminus • Ligands and cartoon model • Classes of enantiodiscrimination processes • Types of nucleophiles and their application to total synthesis • Exceptions to the model • AAA with other metals • Total synthesis of Tipranavir • Conclusion
Pr. Barry M. Trost • Born in 1941 in Philadelphia • Received B.A. From University of Pennsylvania (1962) • Received Ph.D. at MIT under H.O. House’s supervision (1965) • Professor of chemistry at University of Wisconsin (1969) • Vilas research professor of chemistry (1982) • Professor of chemistry at Standford University (1987) • Takami professor of humanities and sciences (1990) • 803 publications (2006) • 38 honors and awards • 14 Patents Barry Trost web page at www.stanford.edu/group/bmtrost
Palladium • Discovered in 1803 by William Hyde Wollaston • Isolated from (NH4)2PtCl6 • Name comes from Greek goddess of wisdom, Pallas or Palladion • Atomic number 46 • [Kr] 4d10 • Pd0 = 18e square planar complexes • Pd(II) = 14e square planar complexes
-Allyl Palladium Complex and C-C Bond Formation Trost, B. M.*; Weber, L. J.Am.Chem.Soc. 1975, 97, 1611-1612.
Trost’s Study Trost, B.M; Weber, L. J. Am. Chem. Soc.1975, 97, 1611-1612
Study conclusion • Conclusions: • Stereospecificity of allylic alkylation has potentially important consequences in the application of the method for the creation of stereochemistry in acyclic and macrocyclic systems. • - Alkylation occurs on the face of the -allyl unit opposite to that of the palladium and use of soft nucleophiles are required for successful alkylation
Stereochemistry of Oxidative Addition Hayashi, T.*; Hagihara, T.; Konishi, M.; Kumada, M. J. Am. Chem. Soc. 1983, 105, 7768-7770.
Stoichiometric vs Catalytic • Conclusions: • Oxidative addition of palladium proceed with inversion of configuration and addition on -allyl palladium proceed also with inversion of configuration. • Net retention of configuration also occurs in enantiomeric catalytic system
Counter Anion Effects Amatore, C.; Jutand, A.; M’Barki, M. A.; Meyer, G.; Mottier, L. Eur. J. Inorg. Chem.2001, 873. Cantat, T.; Génin, É.; Giroud, C.; Meyer, G.; Jutand, A.* J. Org. Chem.2003, 687, 365-376.
Syn Complex vs Anti Complex (p-s-p equilibration) Trost, B.M.; Machacek, M.R.; Aponik, A. Acc. Chem. Res.2006, 39, 747-760.
Nucleophile Approach • Nucleophile addition is considered as a SN2-like displacement • Attack must be anti to the Pd leaving group (180o) • High impact for ligand working model analysis
Allyl Terminus Less substituted terminus More substituted terminus Trost, B.M.; Machacek, M.R.; Aponik, A. Acc. Chem. Res.2006, 39, 747-760.
Successful Ligands Tognie, A.; Breutel., C.; Schnyder, A.; Spindler, F.; Landert, H.; Tijani, A J. Am. Chem. Soc. 1994, 116, 4062-4066. Pfaltz, A Acc. Chem. Res. 1993, 26, 339-345. Evans, D.A.; Campos, K.R.; Tedros, J.S.; Michael, F.E.; Gagné, M.R. J. Am. Chem. Soc. 2000, 122, 7905-7920. Faller, J.W.; Wilt, J.C. Organometallics, 2005, 24, 5076-5083. Morimoto, T.; Tachibana, K.; Achiwa, K. Synlett, 1997, 783-785.
Cartoon Model Trost, B.M.; Toste, F.D. J. Am. Chem. Soc., 1999, 121, 4545-4554. Lloyd-Jones G.C. Et. Al. Pure Appl. Chem., 2004, 76, 589-601.
Classes of Enantiodiscriminating Processes Ionization of the leaving group • Class A- Desymmetrization of meso diester • Class B- Desymmetrization of prochiral leaving group on the same carbon • Class C- Unsymmetrical p-allyl Pd complexes (achiral) Addition of the nucleophile • Class D- Meso-like p-allyl Pd complex • Class E- Unsymmetrical p-allyl Pd complexes (chiral)
Class A- Desymmetrization of meso Diester Trost, B.M.; Dudash, J., Jr.; Dirat, O. Chem-Eur. J. 2002, I81, 259-268. Trost, B.M.; Patterson, D.E., J. Org. Chem., 1998, 63, 1339-1341.
Class B- Desymetrisation of Prochiral Leaving Group on the Same Carbon Trost, B.M.; Lee, C.B. J. Am. Chem. Soc. 1998, 120, 6818-6819.
Class B- Desymmetrization of Prochiral Leaving Group on the Same Carbon Trost, B.M.; Lee, C.B. J. Am. Chem. Soc. 1998, 120, 6818-6819.
Class C- Unsymmetrical p-Allyl Pd Complexes (Achiral) Trost, B.M.; Machacek, M.R. Angew. Chem., Int. Ed.2002, 41, 4693-4697.
Class C- Unsymmetrical p-Allyl Pd Complexes (Achiral) Trost, B.M.; Machacek, M.R. Angew. Chem., Int. Ed.2002, 41, 4693-4697.
Class D- Meso-like p-Allyl Pd Complex Trost, B.M.; Dudash, J., Jr.; Hembre, E.J. Chem.-Eur. J. 2001, 16, 1619-1629.
Class D- Meso-like p-Allyl Pd Complex Trost, B.M.; Dudash, J., Jr.; Hembre, E.J. Chem.-Eur. J. 2001, 16, 1619-1629.
Class E- Unsymmetrical p-Allyl Pd Complexes (Chiral Acyclic Substrate) Trost, B.M.; Bunt, R.C.; Lemoine, R.C.; Calkins, T.L. J. Am. Chem. Soc. 2000, 122, 5968-5976.
Class E- Unsymmetrical p-Allyl Pd Complexes (Chiral Cyclic Substrate) Trost, B.M.; Toste, F.D. J. Am. Chem. Soc.2003, 125, 3090-3100.
Lactone Isomerization Trost, B.M.; Toste, F.D. J. Am. Chem. Soc.2003, 125, 3090-3100.
Chirality at the Nucleophile Trost, B.M.; Radinov, R.; Grenzer, H.M. J. Am. Chem. Soc. 1997, 119, 7879-7880. Trost, B.M.; Schroeder, G.M.; Kristensen, J Angew. Chem., Int. Ed.2002, 41, 3492-3495.
Carbon Nucleophiles in Total Synthesis Malonate type: Chapsal, B.D.; Ojima, I. Org. Lett., 2006, 8, 1395-1398.
Carbon Nucleophiles in Total Synthesis Sulfone Type: Nitro type: Trost, B. M.; Chupak, L. S.; Lubbers J. Am. Chem. Soc. 1998, 120, 1732-1740. Trost, B. M.; Surivet, J.-P. Angew. Chem., Int. Ed.2000, 39, 3122-3124.
Oxygen Nucleophiles in Total Synthesis Primary alcohols: Carboxylates: Trost, B. M.; Weiping, T.; Schulte, J. L. Org. Lett. 2000, 2, 4013-4015. Trost, B. M.; Kondo, Y. Tet. Let.1991, 32, 1613.
Oxygen Nucleophiles in Total Synthesis Phenols Trost, B. M.; Toste, F. D. J. Am. Chem. Soc.1998, 120, 9074-9075. Trost, B. M., Tang, W. J. Am. Chem. Soc., 2002, 124, 14542-14543.
Nitrogen Nucleophiles Amines • Mono versus bisalkylation of primary amines • Regioselectivity on Pd p-allyl system • Speed of nucleophile versus p-s-p equilibration Trost, B. M.; Krische, M. J.; Radinov, R.; Zanoni, G. J. Am. Chem. Soc. 1996, 118, 6297-6298. You, S. L.; Zhu, X. Z.; Luo, Y. M.; Hou, X. L.; Dai, L. X. J. Am. Chem. Soc. 2001, 123, 7471-7472.
Nitrogen Nucleophiles in Total Synthesis Azides Trost, B. M.; Pulley, S.R. J. Am. Chem. Soc 1995, 117, 10143-10144. Trost, B. M.; Cook, G. R. Tet. Lett., 1996, 37, 7485-7488.
Nitrogen Nucleophiles in Total Synthesis Sulfonamide Trost, B. M.,; Oslob, J. D.; J. Am. Chem. Soc. 1999, 121, 3057-3064. Mori, M.; Nakanishi, M.; Kajishima, D.; Sato, Y. Org. Lett.2001, 3, 1913-1916.
Nitrogen Nucleophiles in Total Synthesis Imides Trost, B. M.,; Patterson, D. E.; Chem. Eur. J.1999, 5, 3279 Buschmann, N.; Rueckert, A.; Blechert, S. J. Org. Chem.2002, 67, 4325-4329.
Nitrogen Nucleophiles in Total Synthesis Trost, B. M.; Shi, Z. J. Am. Chem. Soc. 1996, 118, 3037-3038. Trost, B. M.; Madsen, R.; Guile, S. D.; Tet. Lett., 1997, 38, 1707-1710.
Sulfur Nucleophiles Pd -AAA Trost, B. M.; Organ, M. G.; O’Doherty, G. A. J. Am. Chem. Soc.1995, 117, 9662-9670. Trost, B. M.; Crawley, M. L.; Lee, C. B. J. Am. Chem. Soc.2000, 122,6120-6121.
Exceptions Trost, B. M.; Toste, D. F. J. Am. Chem. Soc. 2000, 122, 11262-11263. Trost, B.M.; Machacek, M.R.; Aponick, A. Acc. Chem. Res.2006, 39, 747-760.
Exceptions Trost, B.M.; Machacek, M.R.; Aponick, A. Acc. Chem. Rev.2006, 39, 747-760.
Exceptions Trost, B.M.; Gunzner, J.L.; Dirat, O.; Rhee, Y. H. J. Am. Chem. Soc.2002, 124, 10396-10415.
AAA with Other Metals: Tungsten Lloyd-Jones, G.C.; Pfaltz, A. Angew.Chem., Int. Ed., 1995, 34, 462. Co, T.T.; Paek, S.W.; Shim, S.C.; Cho, C.S.; Kim, T.-J.; Choi, D.W.; Kang, S.O.; Jeong, J.H Organometallics, 2002, 22, 1475-1482.
AAA with Other Metals: Iridium Ohmura, T.; Hartwig J.F. J. Am. Chem. Soc. 2002, 124, 15164-15165. Kiener, C.A.; Shu, C.; Incarvito, C.; Hatrwig, J.F. J. Am. Chem. Soc. 2003, 125, 14272-14273.
Novel Iridium Utilisation • Preparation of -Substituted Allylboronates by Chemoselective Iridium-Catalyzed Asymmetric Allylic Alkylation of 1-Propenylboronates - Peng, F.; Hall*, D. G. Tet. Lett.2007, 18, 3305-3309 • Salt-Free Iridium-CatalyzedAsymmetricAllylicAminationswithN,N-Diacylamines and ortho-Nosylamide as AmmoniaEquivalents - Weihofen, R.; Tverskoy, O.; Helmchen, G.; Angew. Chem., Int. Ed.2006, 33, 5546-5549 • Very Efficient Phosphoramidite Ligand for Asymmetric Iridium-CatalyzedAllylic Alkylation - Alexakis*, A.; Polet, D.; Org. Lett.2004, 20, 3529-3532 • Regio- and Enantioselective Iridium-Catalyzed Allylic Alkylation with In Situ Activated P,C-Chelate Complexes - Lipowsky, G.; Miller, N.; Helmchen, G. Angew. Chem., Int. Ed.2004, 43, 4595 –4597
AAA with Other Metals: Molybdenum Trost, B.M.; Dogra, K. J. Am. Chem. Soc. 2002, 124, 7256-7257.
Molybdenum AAA Transition State Krska, S. W.; Hughes, D. L.; Reamer, R. A.; Mathre, D. J.; Sun, Y.; Trost, B. M. J. Am. Chem. Soc. 2002, 124 (43), 12656-12657.
Synthesis of Tipranavir (Aptivus) Trost, B.M.; Andersen, N.G. J. Am. Chem. Soc.2002, 124, 14320-14321.
Synthesis of Tipranavir (Aptivus) 15 steps, 25%yield Trost, B.M.; Andersen, N.G. J. Am. Chem. Soc.2002, 124, 14320-14321.