480 likes | 993 Views
2. I.) IntroductionII.) Palladium-Catalyzed Arylation of Alkali Metal Ketone Enolates A. Initial Discoveries B. Mechanism and Catalyst Improvement C. Asymmetric ArylationIII.) Palladium-Catalyzed Arylation of Silyl Enol Ethers A. Initial Discoveries B. Palladium Catalyzed Arylation of Diphenylsilyl Enol Ethers C. Palladium Catalyzed Arylation of Trimethyl Silyl Enol EthersIV.) Palladium-Catalyzed Arylation of AmidesIV.) Summary.
E N D
1. 1
2. 2 I.) Introduction
II.) Palladium-Catalyzed Arylation of Alkali Metal Ketone Enolates
A. Initial Discoveries
B. Mechanism and Catalyst Improvement
C. Asymmetric Arylation
III.) Palladium-Catalyzed Arylation of Silyl Enol Ethers
A. Initial Discoveries
B. Palladium Catalyzed Arylation of Diphenylsilyl Enol Ethers
C. Palladium Catalyzed Arylation of Trimethyl Silyl Enol Ethers
IV.) Palladium-Catalyzed Arylation of Amides
IV.) Summary
3. 3
4. 4
5. 5 I.) Introduction
II.) Palladium-Catalyzed Arylation of Alkali Metal Ketone Enolates
A. Initial Discoveries
B. Mechanism and Catalyst Improvement
C. Asymmetric Arylation
III.) Palladium-Catalyzed Arylation of Silyl Enol Ethers
IV.) Palladium-Catalyzed Arylation of Amides
IV.) Summary
6. 6
7. 7
8. 8
9. 9
10. 10
11. 11 I.) Introduction
II.) Palladium-Catalyzed Arylation of Alkali Metal Ketone Enolates
A. Initial Discoveries
B. Mechanism and Catalyst Improvement
C. Asymmetric Arylation
III.) Palladium-Catalyzed Arylation of Silyl Enol Ethers
IV.) Palladium-Catalyzed Arylation of Amides
IV.) Summary
12. 12
13. 13
14. 14
15. 15
16. 16
17. 17
18. 18
19. 19
20. 20
21. 21
22. 22 I.) Introduction
II.) Palladium-Catalyzed Arylation of Alkali Metal Ketone Enolates
A. Initial Discoveries
B. Mechanism and Catalyst Improvement
C. Asymmetric Arylation
III.) Palladium-Catalyzed Arylation of Silyl Enol Ethers
IV.) Palladium-Catalyzed Arylation of Amides
IV.) Summary
23. 23
24. 24
25. 25
26. 26
27. 27 Advantages:
1. The palladium-catalyzed arylation of alkali metal ketone enolates has provided a general way to prepare arylated ketones.
2. The use of bulky, electron-rich phosphine ligands not only increases the rate of arylation but also allows the use of aryl chlorides as substrates.
Drawbacks:
1. Difficult to selectively couple at the more hindered of two enolizable positions
2. Difficult to form acidic tertiary stereocenters
Palladium-catalyzed arylation of silyl enol ethers might solve these
problems.
28. 28 I.) Introduction
II.) Palladium-Catalyzed Arylation of Alkali Metal Ketone Enolates
III.) Palladium-Catalyzed Arylation of Silyl Enol Ethers
A. Initial Discoveries
B. Palladium Catalyzed Arylation of Diphenylsilyl Enol Ethers
C. Palladium Catalyzed Arylation of Trimethyl Silyl Enol Ethers
IV.) Palladium-Catalyzed Arylation of Amides
IV.) Summary
29. 29 Kuwajima, I.; Urabe, H. J. Am. Chem. Soc. 1982, 104, 6831.
Kosugi, M.; Hagiwara, I.; Sumiya, T.; Migita. T. Bull. Chem. Soc. Jpn. 1984, 57, 242.
30. 30
31. 31
32. 32
33. 33
34. 34
35. 35
36. 36
37. 37
38. 38
39. 39 I.) Introduction
II.) Palladium-Catalyzed Arylation of Alkali Metal Ketone Enolates
A. Initial Discoveries
B. Mechanism and Catalyst Improvement
C. Asymmetric Arylation
III.) Palladium-Catalyzed Arylation of Silyl Enol Ethers
A. Initial Discoveries
B. Palladium Catalyzed Arylation of Diphenylsilyl Enol Ethers
C. Palladium Catalyzed Arylation of Trimethyl Silyl Enol Ethers
IV.) Palladium-Catalyzed Arylation of Amides
IV.) Summary
40. 40 IV. Palladium-Catalyzed Intermolecular a-Arylation of Amides
41. 41
42. 42
43. 43
44. 44
45. 45
46. 46 Coupling of Zinc Enolates of N,N-Dialkylacetamides Generated via Lithium Enolates.
47. 47 Summary 1. The palladium-catalyzed arylation of alkali metal ketone enolates has provided a general way to prepare arylated ketones.
2. The use of bulky, electron-rich phosphine ligands not only increases the rate of arylation but also allows the use of aryl chlorides as substrates
3. Using silyl enolates and zinc enolates can avoid strongly basic conditions, allowing functional group tolerance and formation of a tertiary carbon center without racemization. These methods expand the application of the palladium-catalyzed arylation of carbonyl compounds.
48. 48