1 / 12

Berechnung des Druckverlustes durch einen 90° Krümmer

Strömungstechnik II: CFD Praktikum. Berechnung des Druckverlustes durch einen 90° Krümmer Vergleich bei laminarer (Re=100) und turbulenter Strömung (Re=100000) Vergleich mit 1-D Stromfadentheorie, analytische Rechnung (Excel) Zur Vorbereitung der Simulation

gina
Download Presentation

Berechnung des Druckverlustes durch einen 90° Krümmer

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Strömungstechnik II: CFD Praktikum • Berechnung des Druckverlustes durch einen 90° Krümmer • Vergleich bei laminarer (Re=100) und turbulenter Strömung (Re=100000) • Vergleich mit 1-D Stromfadentheorie, analytische Rechnung (Excel) • Zur Vorbereitung der Simulation • Abschätzung der möglichen Wandschubspannung (Reibung) • Abschätzung der notwendigen Netzauflösung • Aufbereitung der Simulationsdaten • Darstellung der Netzauflösung • Darstellung der Rohrströmungsprofile (laminares/turbulentes Profil am Eintritt; außen und innen strömen unterschiedlich schnell und für laminar und turbulent genau entgegengesetzt) • Ablösung liegt bei sichtbarer Rückströmung vor

  2. Begriffe der Grenzschichttheorie besser: zähe Unterschicht

  3. Grenzschichtprofil Origin: Tobias Schmidt, Quantifizierbarkeit von Unsicherheiten bei der Grenzschichtwiedergabe mit RANS-Verfahren, Dissertation, TU Berlin, 2011. http://opus.kobv.de/tuberlin/volltexte/2011/3308/pdf/schmidt_tobias.pdf

  4. instationäre Aerodynamik  zeitliche Schwankungsgrößen Momentanwert= Mittelwert + Schwankungsgröße [ V ] [VDC] [VAC]

  5. Reynolds-Gleichungen: •  Annährung turbulenter Strömungen möglich • einsetzen von Mittel- und Schwankungswert • zeitliche Mittelung • RANS (Reynolds AveragedNavier Stokes)

  6. 0 0 0 0 0 Reynoldsgleichung zeitliche Mittelung der Gleichung Konti-Gl. und Produktregel rückwärts „turbulente“ Zähigkeit  Turbulenzmodelle etc. nicht lineare partielle Differentialgleichung mit Orts- und Zeitabhängigkeit

  7. Turbulenzmodellierung • k = turbulente kinetische Energie •  = Dissipationsrate (spez. Energie/Zeit) •  = Frequenz der Energie dissipierenden Wirbel • Blending (Überlagerung von k-  und k- ) (BSL)Blending Sub-Layer Turbulenzmodellierung • Shear Stress Transport (SST) Modell • Ergebnisse experimenteller Untersuchungen der Grenzschichtströmung

  8. Hintergrund - Turbulenzmodellierung Linear logarithmisch LRR=Launder, Reece, Rodi ASM=Algebraische Spannungsmodell dimensionslose Darstellungen

  9. Wandfunktion und y+ Stützstellenzu nah an der Wand führenu.U. zuFehlern! Origin: Georgi KalitzinGorazd Medic, Gianluca Iaccarino, Paul Durbin, Near-wall behaviorof RANS turbulencemodelsandimplicationsfor wall functions, Journal of Computational Physics 204 (2005) 265–291. http://www.os-cfd.ru/cfd_docs/wall_funcs/Near_wall_behaviour_of_RANS_and_implications_for_wall_functions.pdf

  10. Vernetzung - strukturiert- - unstrukturiert - - unstrukturiert mit Inflation-Layer - Origin: Tobias Schmidt, Quantifizierbarkeit von Unsicherheiten bei der Grenzschichtwiedergabe mit RANS-Verfahren, Dissertation, TU Berlin, 2011. http://opus.kobv.de/tuberlin/volltexte/2011/3308/pdf/schmidt_tobias.pdf

  11. Abschätzung der Netzabmessung - überempirischermittelteGleichungfür die Wandschubspannung - (sieheauszufüllende Excel-Tabelle) C_f=(2*LOG10(U*x/nue)-0,65)^-2,3 Tau_w=c_f/2*rho*U^2 oder aus Schade/Kunz Formel (13.6-12) Tau_w=0,0289*rho*nue^(1/5)*U^(9/5)*x^(-1/5) … mit y+=1 wird kleinster Wandabstand abgeschätzt.

  12. Verfeinerung: • (wandnahe) Grenzschichten • Hohe Gradienten von p, V •  Enge Querschnitte • Biegungen Wand

More Related