1 / 15

Dynamic Stackelberg Problems

Dynamic Stackelberg Problems. Recursive Macroeconomic Theory, Ljungqvist and Sargent, 3 rd Edition, Chapter 19. Background Information. A new type of problem Optimal decision rules are no longer functions of the natural state variables A large agent and a competitive market

ginny
Download Presentation

Dynamic Stackelberg Problems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dynamic Stackelberg Problems Recursive Macroeconomic Theory, Ljungqvist and Sargent, 3rd Edition, Chapter 19 Taylor Collins

  2. Background Information • A new type of problem • Optimal decision rules are no longer functions of the natural state variables • A large agent and a competitive market • A rational expectations equilibrium • Recall Stackelberg problem from Game Theory • The cost of confirming past expectations Taylor Collins

  3. The Stackelberg Problem • Solving the problem – general idea • Defining the Stackelberg leader and follower • Defining the variables: • Zt is a vector of natural state variables • Xt is a vector of endogenous variables • Ut is a vector of government instruments • Yt is a stacked vector of Zt and Xt Taylor Collins

  4. The Stackelberg Problem • The government’s one period loss function is • Government wants to maximize subject to an initial condition for Z0, but not X0 • Government makes policy in light of the model • The government maximizes (1) by choosing subject to (2) (1) (2) Taylor Collins

  5. Problem s • “The Stackelberg Problem is to maximize (2) by choosing an X0 and a sequence of decision rules, the time t component of which maps the time t history of the state Zt into the time t decision of the Stackelberg leader.” • The Stackelberg leader commits to a sequence of decisions • The optimal decision rule is history dependent • Two sources of history dependence • Government’s ability to commit at time 0 • Forward looking ability of the private sector • Dynamics of Lagrange Multipliers • The multipliers measure the cost today of honoring past government promises • Set multipliers equal to zero at time zero • Multipliers take nonzero values thereafter Taylor Collins

  6. Solving the Stackelberg Problem • 4 Step Algorithm • Solve an optimal linear regulator • Use stabilizing properties of shadow prices • Convert Implementation multipliers into state variables • Solve for X0 and μx0 Taylor Collins

  7. Step 1: Solve an o.l.r. • Assume X0 is given • This will be corrected for in step 3 • With this assumption, the problem has the form of an optimal linear regulator • The optimal value function has the form where P solves the Riccati Equation • The linear regulator is subject to an initial Y0 and the law of motion from (2) • Then, the Bellman Equation is (3) Taylor Collins

  8. Step 1: Solve an o.l.r. • Taking the first order condition of the Bellman equation and solving gives us • Plugging this back into the Bellman equation gives us such that ū is optimal, as described by (4) • Rearranging gives us the matrix Riccati Equation • Denote the solution to this equation as P* (4) Taylor Collins

  9. Step 2: Use the shadow price • Decode the information in P* • Adapt a method from 5.5 that solves a problem of the form (1),(2) • Attach a sequence of Lagrange multipliersto the sequence of constraints (2) and form the following Lagrangian • Partition μtconformably with our partition of Y Taylor Collins

  10. Step 2: Use the shadow price • Want to maximize L w.r.t. Ut and Yt+1 • Solving for Ut and plugging into (2) gives us • Combining this with (5), we can write the system as (5) (6) Taylor Collins

  11. Step 2: Use the shadow price • We now want to find a stabilizing solution to (6) • ie, a solution that satisfies • In section 5.5, it is shown that a stabilizing solution satisfies • Then, the solution replicates itself over time in the sense that (7) Taylor Collins

  12. Step 3: convert implementation multipliers • We now confront the inconsistency of our assumption on Y0 • Forces multiplier to be a jump variable • Focus on partitions of Y and μ • Convert multipliers into state variables • Write the last nx equations of (7) as • Pay attention to partition of P • Solving this for Xt gives us (8) Taylor Collins

  13. Step 3: convert implementation multipliers • Using these modifications and (4) gives us • We now have a complete description of the Stackelberg problem (9) (9’) (9’’) Taylor Collins

  14. Step 4: Solve for X0 and μx0 • The value function satisfies • Now, choose X0 by equating to zero the gradient of V(Y0), w.r.t. X0 • Then, recall (8) • Finally, the Stackelberg problem is solved by plugging in these initial conditions to (9), (9’), and (9’’) and iterating the process to get Taylor Collins

  15. Conclusion • Brief Review • Setup and Goal of problem • 4 step Algorithm • Questions, Comments, or Feedback Taylor Collins

More Related