1 / 30

CSE182-L4: Scoring matrices, Dictionary Matching

CSE182-L4: Scoring matrices, Dictionary Matching. Class Mailing List. fa05_182@cs.ucsd.edu To subscribe, send email to fa05_182-subscribe@cs.ucsd.edu You can subscribe from the course web page Use the list for all course related queries, discussions,…. Silly Quiz.

ginther
Download Presentation

CSE182-L4: Scoring matrices, Dictionary Matching

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CSE182-L4: Scoring matrices, Dictionary Matching CSE 182

  2. Class Mailing List • fa05_182@cs.ucsd.edu • To subscribe, send email to • fa05_182-subscribe@cs.ucsd.edu • You can subscribe from the course web page • Use the list for all course related queries, discussions,… CSE 182

  3. Silly Quiz • Name a famous Bioinformatics Researcher • Name a famous Bioinformatics Researcher who is a woman CSE 182

  4. Scoring DNA • DNA has structure. CSE 182

  5. DNA scoring matrices • So far, we considered a simple match/mismatch criterion. • The nucleotides can be grouped into Purines (A,G) and Pyrimidines. • Nucleotide substitutions within a group (transitions) are more likely than those across a group (transversions) CSE 182

  6. Scoring proteins • Scoring protein sequence alignments is a much more complex task than scoring DNA • Not all substitutions are equal • Problem was first worked on by Pauling and collaborators • In the 1970s, Margaret Dayhoff created the first similarity matrices. • “One size does not fit all” • Homologous proteins which are evolutionarily close should be scored differently than proteins that are evolutionarily distant • Different proteins might evolve at different rates and we need to normalize for that CSE 182

  7. PAM 1 distance • Two sequences are 1 PAM apart if they differ in 1 % of the residues. 1% mismatch • PAM1(a,b) = Pr[residue b substitutes residue a, when the sequences are 1 PAM apart] CSE 182

  8. PAM1 matrix • Align many proteins that are very similar • Is this a problem? • PAM1 distance is the probability of a substitution when 1% of the residues have changed • Estimate the frequency Pb|a of residue a being substituted by residue b. • S(a,b) = log10(Pab/PaPb) = log10(Pb|a/Pb) CSE 182

  9. PAM 1 CSE 182

  10. 1 PAM 1 PAM PAM distance • Two sequences are 1 PAM apart when they differ in 1% of the residues. • When are 2 sequences 2 PAMs apart? 2 PAM CSE 182

  11. Higher PAMs • PAM2(a,b) = ∑c PAM1(a,c). PAM1 (c,b) • PAM2 = PAM1 * PAM1 (Matrix multiplication) • PAM250 • = PAM1*PAM249 • = PAM1250 CSE 182

  12. Note: This is not the score matrix: What happens as you keep increasing the power? CSE 182

  13. Scoring using PAM matrices • Suppose we know that two sequences are 250 PAMs apart. • S(a,b) = log10(Pab/PaPb)= log10(Pb|a/Pb) = log10(PAM250(a,b)/Pb) CSE 182

  14. BLOSUM series of Matrices • Henikoff & Henikoff: Sequence substitutions in evolutionarily distant proteins do not seem to follow the PAM distributions • A more direct method based on hand-curated multiple alignments of distantly related proteins from the BLOCKS database. • BLOSUM60 Merge all proteins that have greater than 60%. Then, compute the substitution probability. • In practice BLOSUM62 seems to work very well. CSE 182

  15. PAM vs. BLOSUM • What is the correspondence? • PAM1 Blosum1 • PAM2 Blosum2 • Blosum62 • PAM250 Blosum100 CSE 182

  16. Dictionary Matching, R.E. matching, and position specific scoring CSE 182

  17. Dictionary Matching 1:POTATO 2:POTASSIUM 3:TASTE P O T A S T P O T A T O • Q: Given k words (si has length li), and a database of size n, find all matches to these words in the database string. • How fast can this be done? database dictionary CSE 182

  18. Dict. Matching & string matching • How fast can you do it, if you only had one word of length m? • Trivial algorithm O(nm) time • Pre-processing O(m), Search O(n) time. • Dictionary matching • Trivial algorithm (l1+l2+l3…)n • Using a keyword tree, lpn (lp is the length of the longest pattern) • Aho-Corasick: O(n) after preprocessing O(l1+l2..) • We will consider the most general case CSE 182

  19. Direct Algorithm P O P O P O T A S T P O T A T O P O T A T O P O T A T O P O T A T O P O T A T O P O T A T O Observations: • When we mismatch, we (should) know something about where the next match will be. • When there is a mismatch, we (should) know something about other patterns in the dictionary as well. CSE 182

  20. O A P M S T T T O T S I U A E The Trie Automaton • Construct an automaton A from the dictionary • A[v,x] describes the transition from node v to a node w upon reading x. • A[u,’T’] = v, and A[u,’S’] = w • Special root node r • Some nodes are terminal, and labeled with the index of the dictionary word. 1:POTATO 2:POTASSIUM 3:TASTE u v 1 r S 2 w 3 CSE 182

  21. Start with the first position in the db, and the root node. If successful transition Increment current pointer Move to a new node If terminal node “success” Else Retract ‘current’ pointer Increment ‘start’ pointer Move to root & repeat An O(lpn) algorithm for keyword matching CSE 182

  22. c l O A T P S M T T O T S I U A E Illustration: P O T A S T P O T A T O v 1 S CSE 182

  23. Idea for improving the time • Suppose we have partially matched pattern i (indicated by l, and c), but fail subsequently. If some other pattern j is to match • Then prefix(pattern j) = suffix [ first c-l characters of pattern(i)) c l P O T A S T P O T A T O P O T A S S I U M Pattern i T A S T E 1:POTATO 2:POTASSIUM 3:TASTE Pattern j CSE 182

  24. O A S T M P T T O T S I U A E Improving speed of dictionary matching • Every node v corresponds to a string sv that is a prefix of some pattern. • Define F[v] to be the node u such that su is the longest suffix of sv • If we fail to match at v, we should jump to F[v], and commence matching from there • Let lp[v] = |su| 2 3 4 5 1 S 11 6 7 9 10 8 CSE 182

  25. An O(n) alg. For keyword matching • Start with the first position in the db, and the root node. • If successful transition • Increment current pointer • Move to a new node • If terminal node “success” • Else (if at root) • Increment ‘current’ pointer • Mv ‘start’ pointer • Move to root • Else • Move ‘start’ pointer forward • Move to failure node CSE 182

  26. Illustration P O T A S T P O T A T O l c 1 P O T A T O v T S S I U M A S T E CSE 182

  27. Time analysis • In each step, either c is incremented, or l is incremented • Neither pointer is ever decremented (lp[v] < c-l). • l and c do not exceed n • Total time <= 2n l c P O T A S T P O T A T O CSE 182

  28. Blast: Putting it all together • Input: Query of length m, database of size n • Select word-size, scoring matrix, gap penalties, E-value cutoff CSE 182

  29. Blast Steps • Generate an automaton of all query keywords. • Scan database using a “Dictionary Matching” algorithm (O(n) time). Identify all hits. • Extend each hit using a variant of “local alignment” algorithm. Use the scoring matrix and gap penalties. • For each alignment with score S, compute the bit-score, E-value, and the P-value. Sort according to increasing E-value until the cut-off is reached. • Output results. CSE 182

  30. Protein Sequence Analysis • What can you do if BLAST does not return a hit? • Sometimes, homology (evolutionary similarity) exists at very low levels of sequence similarity. • A: Accept hits at higher P-value. • This increases the probability that the sequence similarity is a chance event. • How can we get around this paradox? • Reformulated Q: suppose two sequences B,C have the same level of sequence similarity to sequence A. If A& B are related in function, can we assume that A& C are? If not, how can we distinguish? CSE 182

More Related