1 / 6

Aqueous Equilibria, Part Two

AP Chemistry. Aqueous Equilibria, Part Two. CH 3 COOH . NaCH 3 COO . CH 3 COOH CH 3 COO – + H +. greatly [CH 3 COO – ]. shift. [H + ] and pH. sodium acetate. The Common-Ion Effect. Consider a mixture of a “weak” and a “common-ion,” soluble salt. .

gittel
Download Presentation

Aqueous Equilibria, Part Two

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AP Chemistry Aqueous Equilibria, Part Two

  2. CH3COOH NaCH3COO CH3COOH CH3COO– + H+ greatly [CH3COO–]. shift [H+] and pH sodium acetate The Common-Ion Effect Consider a mixture of a “weak” and a “common-ion,” soluble salt. Since NaCH3COO is strong, adding it to the solution… By Le Chatelier… The result is that…

  3. HBrO H+ + BrO– This illustrates the common-ion effect: “The dissociation of a ‘weak’ DECREASES when a strong, common-ion salt is added to the solution.” For 100 HBrOs in soln… 90 10 10 If we add a “strong,” BrO– salt (like KBrO), the amount of BrO– goes up, and the amount of HBrO that dissociates goes down (by Le Chatelier).

  4. x2 0.10x + x2 = 4.5 x 10–4 = 0.085 – x 0.085 – x Find the pH of a solution containing 0.085 M nitrous acid (Ka = 4.5 x 10–4) and 0.10 M potassium nitrite. HNO2 H+ + NO2– – x + x + x 0.085 0 0.10 X Ka = 4.5 x 10–4 X So… x = [H+] = 3.825 x 10–4 M pH = 3.42 Find the pH of 0.085 M nitrous acid, on its own. HNO2 DID dissociate less when the common-ion salt was present. X So… x = [H+] = 6.185 x 10–3 M pH = 2.21

  5. Buffered Solutions (“buffers”) solns based on the common-ion effect -- they resist DpH -- -- a mixture of… a “weak” (either acid or base) and a common-ion salt NH3 and NH4Cl HOAc and NaOAc e.g., HF and KF HBrO2 and Ca(BrO2)2 buffer capacity: the amount of acid or base the buffer can “neutralize” before the pH begins to change appreciably greater amounts of acid/base AND common-ion salt -- buffer capacity increases with…

  6. 0.10x + x2 1.4 x 10–4 = 0.12 – x “You betcha.” Find the pH of a buffer that is 0.12 M lactic acid, HC3H5O3 (Ka = 1.4 x 10–4) and 0.10 M sodium lactate. (NaC3H5O3) HC3H5O3 H+ + C3H5O3– + x + x – x 0.12 0 0.10 “Shortcut OK?” X X 1.68 x 10–4 M pH = 3.77 x = [H+] =

More Related