430 likes | 553 Views
Lecture Objectives:. Continue with Sorption Cooling Thermodynamics of mixtures T - x diagram H- x diagram. Combined heat and power (cogeneration CHP or three generation CCHP). Here, we use thermal energy for heating and/or cooling. Absorption Cycle. Replace compressor.
E N D
Lecture Objectives: • Continue with Sorption Cooling • Thermodynamics of mixtures • T - x diagram • H- x diagram
Combined heat and power(cogeneration CHP or three generation CCHP) Here, we use thermal energy for heating and/or cooling
Absorption Cycle Replace compressor Same as vapor compression but NO COMPRESSOR
Absorption cooling cycle Relatively simple thermodynamics with addition of mixtures (water – ammonia) Rich solution of Heat H2O + NH3 H2O H2O Rich solution of H2O + NH3
Mixtures(T-x diagram) Dew point curve Saturated vapor Mixture of liquid and vapor Saturated liquid Bubble point curve For P= 4 bar
h-x diagram hfg for H2O hfg for NH3 Isotherms are ploted only in liquid region
Composition of h-x diagram Saturated vapor line at p1 Equilibrium construction line at p1 1e Used to determine isotherm line in mixing region! Start from x1; move up to equilibrium construction line; move right to saturated vapor line; determine 1’; connect 1 and 1’. Isotherm at P1 and T1 Adding energy B A x1 X1’ mass fraction of ammonia in saturated vapor
h-x diagramat the end of your textbook you will find these diagramsfor 1) NH3-H2O2) H2O-LiBr LiBr is one of the major liquid descants in air-conditioning systems
Adiabatic mixing in h-x diagram(Water – Ammonia) From the textbook (Thermal Environmental Eng.; Kuehen et al)
Absorption cooling cycle Rich solution of Heat H2O + NH3 H2O H2O Rich solution of H2O + NH3
Mixing of two streams with heat rejection (Absorber) m2 =pure NH3 (x2=1) m3 mixture of H2O and NH3 m1 m3 m2 2 m1 Q cooling 3’ Mixture of 1 and 2 Heat rejection Mass and energy balance: (1) 1 3 (2) (3) x3 x From mixture equation: Substitute into (2) Substitute into (3) From adiabatic mixing (from previous slide)
Change of pressure(pump) Sub cooled liquid at p2 2 Saturated liquid at p1 1 p1 ≠p2 m1 =m2 p2 Saturated liquid at x1 =x2 2 p1 Saturated liquid at 1 x1=x2
Heat transfer with separation into liquid and vapor (Generator) Saturated vapor Heat =2V Sub cooled liquid Saturated liquid We can “break” this generator into 2 units heating m4 Q12 /m1 2L= m1 =m2 Separator mixture sub cooled liquid x1 m3 Q12 Apply mass and energy balance In the separator : Apply mass and energy balance In the heat exchanger defines point 2 in graph Defines points 3 and 4 in graph
Heat rejection with separation into liquid and vapor (Condenser) Saturated vapor at p1 m1 Saturated vapor 1 heat rejection m2 Q1-2/m1 m1 =m2 Saturated liquid at p1 x1 =x2 2 p1 =p2 x1=x2
Throttling process (Expansion valve) Saturated vapor 1 2V 1 2 T1 h1 =h2 2 p1 Saturated liquid at p1 ≠p2 T2 2L Saturated liquid p2 m1 =m2 p1 ≠p2 Saturated liquid at x1 =x2 x1 =x2
Simple absorption system 3V 3L 3LLP
Simple absorption system Saturated vapor at p2=p3=p4 3V 6 3 5V mixing 1’ Needed thermal energy Useful cooling energy 4 3L 5 3LLP 2 Saturated liquid at p2=p3=p4 Saturated liquid at p1=p5=p6=p3_LLP 1 5L
Heat transfer with separation into liquid and vapor (Generator) How to move point 4 to right ? =2V =2V heating m4 Q12 /m1 2L= 2L= =m2 m1 =m2 mixture Separator mixture sub cooled liquid x1 x1 m3 Q12 m3 Q12
Absorption cooling with preheaterimprovement 1 Rich ammonia vapor 4 5 Refrigeration and air conditioning (Ramesh et al)
Absorption cooling with preheater Saturated vapor at p1’ 1’’’V=3 Major heat source 6 1’’’ mixing isotherm 6h 1’’ Useful cooling energy 1’’’L =2 4 5 1’ Saturated liquid at p1’ 2’ , 2’’ Saturated liquid at p1 1 Cooling tower Pumping energy COP= Q cooling / Q heating (Pump ???)
Absorption cooling with precooling Saturated vapor at p1’ 1’’’V=3 Major heat source 6’ 6 1’’’ 6h mixing Saturated liquid at p1’ isotherm 1’’ Useful cooling energy (larger!) 1’’’L =2 4 1’ Saturated liquid at p1 4’ 2’ , 2’’ 5 1 Cooling tower (needs to cool more!) Pumping energy
System improvement #3 Generator with Enrichment of NH3 Different 8V 9 8L 10 8LLP 11
Heat rejection with separation into liquid and vapor (Enrichment NH3 in the vapor mixture) This is our point cooling 1 4=2V Separator 6=5V Q12 /m1 cooling Q45 /m4 x8 m8 8 7 5 m1 =m2 2 mixture isotherm sub cooled liquid m3 2L Q12 x8 x1
System improvement #1Heat rejection with separation into liquid and vapor (Enrichment NH3 in the vapor mixture) This is our point cooling 1 4=2V Separator 6=5V Q12 /m1 cooling Q45 /m4 x8 m8 8 7 5 m1 =m2 2 mixture isotherm sub cooled liquid m3 2L Q12 x8 x1
Heat rejection with separation into liquid and vapor (Enrichment NH3 in the vapor mixture) This is our point cooling 1 4=2V Separator 6=5V Q12 /m1 cooling Q45 /m4 x8 m8 8 7 5 m1 =m2 2 mixture isotherm sub cooled liquid m3 2L Q12 x8 x1
Absorption system with Enrichment (no preheater nor precooler) Saturated vapor at p2 3V 8V mixing 3 11 8L 1’ Useful cooling energy 8LLP 10 2 3L 9 Saturated liquid at p2 Saturated liquid at p1 1
For Real energy analysis you need real h-x diagram! hfg for H2O hfg for NH3
Example of H2O-NH3 System • Text Book (Thermal Environmental Engineering) Example 5.5 • HW: • Solve the problem 5.6 from the textbook • Beside example 5.5, you will need to study example 5.6 and 5.7
Useful information about LiBr absorption chiller • http://www.cibse.org/content/documents/Groups/CHP/Datasheet%207%20-%20Absorption%20Cooling.pdf Practical Tips for Implementation of absorption chillers • Identify and resolve any pre-existing problems with a cooling system, heat rejection system, water treatment etc, before installing an absorption chiller, or it may be unfairly blamed. • Select an absorption chiller for full load operation (by the incorporation of thermal stores if necessary) as COP will drop by up to 33% at part-load. • Consider VSD control of absorbent pump to improve the COP at low load. • Consider access and floor-loading (typical 2 MW Double-effect steam chiller 12.5 tons empty, 16.7 tones operating). • Ensure ambient of temperature of at least 5°C in chiller room to prevent crystallization. • http://www.climatewell.com/index.html#/applications/solar-cooling
System with no pump(Platen-Munter system) • H2O-NH3 + hydrogen http://www.youtube.com/watch?v=34K61ECbGD4
Thermal storage for adjustment production to consumption We need a thermal storage somewhere in this system !
Thermal storage • Store heat • Many issues to consider (∆T, pressure, losses,…. ) • Store cooling energy • Chilled water • For cooling condenser • For use in AHU (cooling coils) • Ice storage • Compact but… • Other materials (PCMs) that change phase the temperature we need in cooling coils • Many advantages, but disadvantages too!
On-Peak and Off-Peak Periods This profile depends on the type of building(s) !
Chilled water tank Use of stored cooling energy Store Use
Which one is better ? • Depends on what you • want to achieve: • Peak electric power reduction • Capacity reduction • …..
Downsizing the Chiller • Lower utility costs • Lower on-peak electrical consumption(kWh) • Lower on-peak electrical demand (kW) • Smaller equipment size • Smaller chiller • Smaller electrical service (A) • Reduced installed cost • May qualify for utility rebates or other incentives
Sizing storage system (use Annual Cooling-Load Profile) How often you need to use it? What are the cost-benefit curves ? What is the optimum size ?