1 / 10

Introduction to Cloud Computing and Secure Cloud Computing

Introduction to Cloud Computing and Secure Cloud Computing. Bhavani Thuraisingham The University of Texas at Dallas July 18, 2015. Cloud Computing.

glennis
Download Presentation

Introduction to Cloud Computing and Secure Cloud Computing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction to Cloud Computing and Secure Cloud Computing Bhavani Thuraisingham The University of Texas at Dallas July 18, 2015

  2. Cloud Computing • Cloud computing is the delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices as a metered service over a network • Cloud computing provides computation, software, data access, and storage resources without requiring cloud users to know the location and other details of the computing infrastructure. • End users access cloud based applications through a web browser or a light weight desktop or mobile app while the business software and data are stored on servers at a remote location. • Cloud application providers strive to give the same or better service and performance as if the software programs were installed locally on end-user computers. • At the foundation of cloud computing is the broader concept of infrastructure convergence and shared services.

  3. Service Models • Cloud computing providers offer their services according to three fundamental models Infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS) where IaaS is the most basic and each higher model abstracts from the details of the lower models. • Infrastructure as a Service (IaaS) • In this most basic cloud service model, cloud providers offer computers – as physical or more often as virtual machines; raw (block) storage, firewalls, load balancers, and networks. • IaaS providers supply these resources on demand from their large pools installed in data centers.. • To deploy their applications, cloud users then install operating system images on the machines as well as their application software. • In this model, it is the cloud user who is responsible for patching and maintaining the operating systems and application software. • Platform as a Service (PaaS) • In the PaaS model, cloud providers deliver a computing platform and/or solution stack typically including operating system, programming language execution environment, database, and web server. • Application developers can develop and run their software solutions on a cloud platform without the cost and complexity of buying and managing the underlying hardware and software layers. • Software as a Service (SaaS) • In this model, cloud providers install and operate application software in the cloud and cloud users access the software from cloud clients

  4. Deployment Models • Public cloud • A public cloud is one based on the standard cloud computing model, in which a service provider makes resources, such as applications and storage, available to the general public over the Internet. • Public cloud services may be free or offered on a pay-per-usage model. • Community cloud • Community cloud shares infrastructure between several organizations from a specific community with common concerns (security, compliance, jurisdiction, etc.), whether managed internally or by a third-party and hosted internally or externally. • The costs are spread over fewer users than a public cloud (but more than a private cloud), so only some of the cost savings potential of cloud computing are realized. • Hybrid cloud • Hybrid cloud is a composition of two or more clouds (private, community or public) that remain unique entities but are bound together, offering the benefits of multiple deployment models. • It can also be defined as multiple cloud systems that are connected in a way that allows programs and data to be moved easily from one deployment system to another. • Private cloud • Private cloud is infrastructure operated solely for a single organization, whether managed internally or by a third-party and hosted internally or externally,

  5. Issues • Privacy • Using a cloud service provider (CSP) can complicate privacy of data because of the extent to which virtualization for cloud processing (virtual machines) and cloud storage are used to implement cloud services. • Security • The effectiveness and efficiency of traditional protection mechanisms are being reconsidered as the characteristics of this innovative deployment model can differ widely from those of traditional architectures • Compliance • In order to obtain compliance with regulations including FISMA, HIPAA, and SOX in the United States, the Data Protection Directive in the EU and the credit card industry's PCI DSS, users may have to adopt community or hybrid deployment modes that are typically more expensive and may offer restricted benefits. • Legal • Certain legal issues arise; everything from trademark infringement, security concerns to the sharing of propriety data resources.

  6. Secure Cloud Computing • Cloud computing security refers to a broad set of policies, technologies, and controls deployed to protect data, applications, and the associated infrastructure of cloud computing. • Cloud security is not to be confused with security software offerings that are "cloud-based" (a.k.a. security-as-a-service). • There are a number of security issues/concerns associated with cloud computing but these issues fall into two broad categories: • Security issues faced by cloud providers (organizations providing Software-, Platform-, or Infrastructure-as-a-Service via the cloud) • Security issues faced by their customers. In most cases, the provider must ensure that their infrastructure is secure and that their clients’ data and applications are protected while the customer must ensure that the provider has taken the proper security measures to protect their information • The extensive use of virtualization in implementing cloud infrastructure brings unique security concerns for customers or tenants of a public cloud service. • Virtualization alters the relationship between the OS and underlying hardware - be it computing, storage or even networking. • This introduces an additional layer - virtualization - that itself must be properly configured, managed and secured. • Specific concerns include the potential to compromise the virtualization software, or "hypervisor". While these concerns are largely theoretical, they do exist

  7. Security and Privacy • Security and privacy • In order to ensure that data is secure (that it cannot be accessed by unauthorized users or simply lost) and that data privacy is maintained, cloud providers attend to the following areas: • Data protection  • To be considered protected, data from one customer must be properly segregated from that of another; it must be stored securely when “at rest” and it must be able to move securely from one location to another. • Cloud providers have systems in place to prevent data leaks or access by third parties. Proper separation of duties should ensure that auditing or monitoring cannot be defeated, even by privileged users at the cloud provider • Physical Control  • Physical control of the Private Cloud equipment is more secure than having the equipment off site and under someone else’s control. • Having the ability to visually inspect the data links and access ports is required in order to ensure data links are not compromised. • Identity management  • Every enterprise will have its own identity management system to control access to information and computing resources. • Cloud providers either integrate the customer’s identity management system into their own infrastructure, using federation or SSO technology, or provide an identity management solution of their own.

  8. Security and Privacy • Physical and personnel security  • Providers ensure that physical machines are adequately secure and that access to these machines as well as all relevant customer data is not only restricted but that access is documented. • Availability  • Cloud providers assure customers that they will have regular and predictable access to their data and applications. • Application security  • Cloud providers ensure that applications available as a service via the cloud are secure by implementing testing and acceptance procedures for outsourced or packaged application code. It also requires application security measures (application-level firewalls) be in place in the production environment. • Privacy  • Finally, providers ensure that all critical data (credit card numbers, for example) are masked and that only authorized users have access to data in its entirety. • Moreover, digital identities and credentials must be protected as should any data that the provider collects or produces about customer activity in the cloud. • Legal issues  • In addition, providers and customers must consider legal issues, such as Contracts and E-Discovery, and the related laws, which may vary by country

  9. Compliance • Compliance • Numerous regulations pertain to the storage and use of data, including Payment Card Industry Data Security Standard (PCI DSS), the Health Insurance Portability and Accountability Act (HIPAA), the Sarbanes-Oxley Act, among others. • Many of these regulations require regular reporting and audit trails. • Cloud providers must enable their customers to comply appropriately with these regulations. • Business continuity and data recovery • Cloud providers have business continuity and data recovery plans in place to ensure that service can be maintained in case of a disaster or an emergency and that any data loss will be recovered. • These plans are shared with and reviewed by their customers. • Logs and audit trails • In addition to producing logs and audit trails, cloud providers work with their customers to ensure that these logs and audit trails are properly secured, maintained for as long as the customer requires, and are accessible for the purposes of forensic investigation • Unique compliance requirements • In addition to the requirements to which customers are subject, the data centers maintained by cloud providers may also be subject to compliance requirements. • Using a cloud service provider (CSP) can lead to additional security concerns around data jurisdiction since customer or tenant data may not remain on the same system, or in the same data center or even within the same provider's cloud.

  10. Compliance • Legal and contractual issues • Aside from the security and compliance issues enumerated above, cloud providers and their customers will negotiate terms around liability (stipulating how incidents involving data loss or compromise will be resolved, for example), intellectual property, and end-of-service (when data and applications are ultimately returned to the customer. • Public records • Legal issues may also include records-keeping requirements in the public sector, where many agencies are required by law to retain and make available electronic records in a specific fashion. • This may be determined by legislation, or law may require agencies to conform to the rules and practices set by a records-keeping agency. • Public agencies using cloud computing and storage must take these concerns into account.

More Related