1 / 30

photoelectron energy distribution for 1.6 eV photons

strong-field atomic physics I. xenon at 10 14 W/cm 2. helium at 10 15 W/cm 2. h n. “photon description”. “dc-tunneling picture”. photoelectron energy distribution for 1.6 eV photons. Louis DiMauro OSU 2005. strong-field atomic physics I. . [  o   int (t ) ]( t )  iħ ( t ).

glora
Download Presentation

photoelectron energy distribution for 1.6 eV photons

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. strong-field atomic physics I xenon at 1014 W/cm2 helium at 1015 W/cm2 hn “photon description” “dc-tunneling picture” photoelectron energy distribution for 1.6 eV photons Louis DiMauro OSU 2005

  2. strong-field atomic physics I  [o  int(t)](t)  iħ(t) time-dependent Schrődinger equation • understand the limit where Hint Ho • probe on a time-scale where t < to • guide dynamics by tailoring Hint(t) Louis DiMauro OSU 2005

  3. photoelectric effect Einstein (1905) Ee 0 h ip electron energy Ee= h - ip transition probability: P = Fwhere   cm2, F  /cm2 s,   s consider cw-light: = (1A)2 = 10-16 cm2for P  1: F ~ 1016  /cm2 sor intensity I ~ 10-3 W/cm2 100 fs (10-13 s) light pulse:for P  1: F ~ 1029  /cm2 sor intensity I ~ 1010 W/cm2

  4. multi-photon photoelectric effect n-photon case (h  ip) Ee Ee 0 h b 0 ip ip a h electron energy Ee=2h - ip electron energy Ee=nh - ip  h ~ 0 transition probability: P = nFn where n  cm2n sn-1 2-photon case (h  ip) transition probability: P = aF bF or P = 2F2 where 2  a b = cm4 s

  5. dc-tunnel ionization coulomb -1/x dc field -xE stark -1/x - xE DC field xE Stark -1/x + xE - + - + + - + -  V + = = x x x x x Tunnel Rate  1/E eE

  6. ac-tunnel ionization electron current E-field • electrons are emitted as burst every ½-cycle.

  7. Keldysh (1964) theory of ionization optical frequency tunneling frequency    << 1 tunneling low frequency and/or high intensity  >> 1 multiphoton high frequency and/or low intensity “dc-tunneling picture” “photon description”

  8. hydrogen atom r=510-9 cm Coulomb Law E= q/r2 ~ 5109 V/cm  1au + - What laser intensity gives an equivalent field strength?

  9. above-threshold ionization (ATI) à la Agostini S=0 1.06 m, 4  1013 W/cm2 0.53 m, 8  1012 W/cm2 S=1 Xe: Ip =12.1 eV Ee = Nh - Ip 0.53 m, N=6, EN=1.9 eV 1.06 m, N=11, EN=0.77 eV ATI: N+S = (N+S)h - Ip 0.53 m, S=1, E7=4.2 eV

  10. motion of the free electron  • ponderomotive or quiver energy:Upl2 /4 • displacement:a l2 E • For 800 nm (red) laser at 1015 W/cm2Up= 60 eVa ~ 50 au (25 A) think in ponderomotive units !!!

  11. ATI & ponderomotive threshold shift h +Up(I) ionization energy ionization energy perturbation theory f()=2n P2n(cos) Xe Xe Xe+ Xe+ N+S() = (N+S)h - Ip – Up() intensity-dependent energy • xenon • long pulse, 30 ps • 1 m , 30 TW/cm2

  12. ponderomotive acceleration y x • electrons are repelled from regions of high intensity. • long pulse (adiabatic)quiver E  translational N+S(r,) = (N+S)h - Ip–Up(r,) + Up(r,) intensity-independent energy

  13. short pulse “resonant” ATI • Xenon, 100 fs, 800 nm, 70 TW/cm2 Freeman et al. PRL 59, 1092 (1987) for short pulse the ponderomotive gradient is negligible.

  14. role of resonance electron energy electron energy electron energy electron energy electron energy E E E E • Experiment is a spatial and temporal average of intensity I(r,t). 0 0 0 0 0 E I 

  15. the simpleman’s picture of ionization o Field amplitude  2 Time  • quasi-classical description: • Gallagher, PRL 61, 2304 (1988) • Van Linden van den Heuvell & Muller, in Multiphoton Processes (1988) • Corkum, Burnett & Brunel, PRL 62, 1259 (1989) electric fieldE = Eo sint velocityv(t) = Eo/[cost - coso] + vo quiver drift for tunneling, vo=0

  16. predictions of the simpleman • in the experiment, we detect the drift energy not quiver !! T = mv2/2 = 2Up cos2 o  V x  V Tunnel Rate  1/E eE • Maximum drift energy = 2Up. x v(t) = Eo/[cost - coso] QuiverDrift

  17. simpleman comparison to experiment 1 xenon 30 TW/cm2 Up = 3 eV bad news!    helium 1 PW/cm2 Up = 50 eV good news!    remember Up  !!!

  18. simpleman comparison to experiment 2 Agostini, Muller et al. Simpleman sideband estimate: v(t) = Eo/[cost - coso] + vo with vo  kinetic energy 1s22s22p63s23p6  1s22s22p53s23p6 L-shell ionization broadening: e(200 eV) + dressing experiment: To = 200 eV, Up = 20 meV T = 6 sidebands good simpleman!

  19. moving beyond the simpleman quantum model: TDSE-SAE K. Schafer et al. PRL 70, 1599 (1993) ~ 10-4–5 helium, 0.8 m, 1 PW/cm2 ideal case 10 Hz & 100 channel experiment: 100 e/shot or 1 e/ch*s, 105 range  28 hrs!

  20. 1 au field adequate for atomic physics? • n-photon ionization perturbation theory: P = n Fn  • saturation (depletion): P    Fs = (n )-1/n • helium (24 eV, 16-photons): • Fs = 1033 p/s*cm2 or Es ~ 0.1 au • over-the-barrier ionization • V(x) = -Ze2/x – eEox • solve for Eo: • Eo = Ip2/4q3Z • helium: Eo = 0.2 au answer: 1 au field is adequate for neutral atomic ionization!

  21. for high sensitivity measurements baseline: 1 au field strength (3.5  1016 W/cm2) pulse: 100 fs duration & 4 m beam waist  1 mJ pulse energy typical laser produces a few Watts average power  103 pulses per second • kilohertz regenerative amplification (late 1980s): • Mourou, Bado, Bouvier (Rochester) • Saeed, Kim, DiMauro (BNL) • Fayer (Stanford) • … • seminal work (LLNL): • Lowdermilk & Murray, J App. Phys. 51, 2436 (1980).

  22. for kilohertz regenerative amplification • cw or quasi-cw pumping • factors: absorption spectrum, lifetime, thermal coefficients, … • material properties • damage, saturation fluence, … • YLF, YAG, glass: millisecond lifetimes, broad absorption • poor thermal properties, narrow emission  • Ti:sapphire: microsecond lifetimes, narrow absorption • good thermal properties, broad emission  • advantages of regenerative amplification: • high amplification 106-8 • excellent spatial mode • good stability 1-3% rms

  23. kHz regenerative amp circa MDCCCCLXXXVIII AD PD1 dump HR HR Q-switch & trap Pockels cell YLF head coupling polarizers out PD1 PD1

  24. for amplifying short pulse ultra-fast laser oscillator 1000x stretcher amplifier media 1000x compressor positive GVD negative GVD Chirped Pulse Amplification (CPA) * G. Mourou and Strickland (1985) • extract maximum energy • minimize optical damage • state-of-the-art systems  1020 W/cm2 • kilohertz operation  1016 W/cm2

  25. typical kHz experiment photodiode TMP time faraday UHV tdc amp disc TMP -metal TOF/MS

  26. high sensitivity results xenon, 1m, 30ps electrons TW/cm2 30 TW/cm2 20 20 15 10 10 HHG total rate photoelectron  [o  int(t)](t)  iħ(t) TDSE-SAE

  27. scattering “rings” in high-order ATI xenon, 1 m, 1013 W/cm2 • higher sensitivity  new insights

  28. scattering “rings”: intensity dependence 1/2 • Remember, Up Intensity !! • “rings” scale with ponderomotive energy theory: Schafer & Kulander • “rings” appear within an energy window ! • “rings” appearance is intensity dependent!

  29. scattering “rings”: short pulse xenon, 0.8 m, 50 fs argon, 0.8 m, 50 fs exp 1D 1D: soft core potential: V(x) = -(1 + x2)-1/2

  30. helium: kHz experiment 0.8 m 1 PW/cm2 simpleman tomorrow’s plat du jour: helium & the rebirth of the classical picture

More Related