270 likes | 423 Views
Graphene: electrons in the flatland Antonio H. Castro Neto. Seoul, September 2008. Disclaimer. Andre Geim. Philip Kim. Kostya Novoselov. IQHE measured. Graphene is discovered. AHCN, P. Guinea, N. Peres, K. Novoselov, A. Geim, Rev. Mod. Phys. (2008). A brief history of graphene. 5 m m.
E N D
Graphene: electrons in the flatlandAntonio H. Castro Neto Seoul, September 2008
Disclaimer Andre Geim Philip Kim Kostya Novoselov IQHE measured Graphene is discovered AHCN, P. Guinea, N. Peres, K. Novoselov, A. Geim, Rev. Mod. Phys. (2008)
Au contacts SiO2 graphite Si Plus some nanotechnology… 2m • optical image • SEM image • design • contacts and mesa
Some electronic properties of graphene t’ ~ 0.1 eV A t ~ 2.7 eV A B Next Nearest neighbors Nearest neighbors Unit cell
In momentum space Dirac Cone Semi-Metal “Ultra relativistic” Solid State at low speed of light
Vitor Pereira Nuno Peres Johan Nilsson Bruno Uchoa Valeri Kotov Outline • Coulomb impurity in graphene • Vitor M. Pereira, Johan Nilsson, AHCN • Phys.Rev.Lett. 99, 166802 (2007); • Vitor M. Pereira, Valeri Kotov, AHCN • Phys. Rev. B 78, 085101 (2008). • Anderson impurity in graphene • Bruno Uchoa, Valeri Kotov, Nuno Peres, AHCN • Phys. Rev. Lett. 101, 026805 (2008); • Bruno Uchoa, Chiung-Yuan Lin, Nuno Peres, AHCN • Phys.Rev.B 77, 035420 (2008).
Coupling 3D Schroedinger
Undercritical Supercritical
HIC Neutron stars
E T>T K N(E) Anderson’s Impurity Model
Non-interacting: U=0 V=0 Broadening Energy Energy
U = 1 eV n_up n_down V=1eV, e0=0.2 eV The impurity moment can be switched on and off!
U = 40 meV U = 0.1 eV
Conclusions • Impurities in graphene behave in an unusual way when compared to normal metals and semiconductors. • One can test theories of nuclear matter under extreme conditions. • Control of the magnetic moment formation of transition metals using electric fields.