1 / 26

Distance in Trees

This algorithm reconstructs an evolutionary tree from a distance matrix in an additive manner using the Four Point Condition and degenerate triples.

Download Presentation

Distance in Trees

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. j i Distance in Trees dij(T) - the length of a path between leaves i and j d1,4 = 12 + 13 + 14 + 17 + 13 = 69

  2. Phylogenetic Tree Reconstruction • Input: • Distance matrix D • Output: • Binary Tree T such that dij(T) = Dij

  3. Tree reconstruction for any 3x3 matrix is straightforward We have 3 leaves i, j, k and a center vertex c Reconstructing a 3 Leaved Tree Observe: dic + djc = Dij dic + dkc = Dik djc + dkc = Djk

  4. Reconstructing a 3 Leaved Tree(cont’d) dic + djc = Dij + dic + dkc = Dik 2dic + djc + dkc = Dij + Dik 2dic + Djk = Dij + Dik dic = (Dij + Dik – Djk)/2 Similarly, djc = (Dij + Djk – Dik)/2 dkc = (Dki + Dkj – Dij)/2

  5. Trees with > 3 Leaves • An tree with n leaves has 2n-3 edges • This means fitting a given tree to a distance matrix D requires solving a system of “n choose 2” equations with 2n-3 variables • This is not always possible to solve for n > 3

  6. The Four Point Condition Compute: 1. Dij + Dkl, 2. Dik + Djl, 3. Dil + Djk 2 3 1 2 and3represent the same number:the length of all edges + the middle edge (it is counted twice) 1represents a smaller number:the length of all edges – the middle edge

  7. The Four Point Condition • Four point condition: For i,j,k,l two of the sums Dij + Dkl, Dik + Djl, Dil + Djk are equal and the third sum is smaller • Definition : An n x n matrix D is additive provided there exists a tree T with D(T) = D. (Note: T is unique.) • Theorem: D is additive if and only if the four point condition holds for every quartet 1 ≤ i,j,k,l ≤ n

  8. Additive Distance Matrices Matrix D is ADDITIVE if there exists a tree T with dij(T) = Dij NON-ADDITIVE otherwise

  9. Reconstructing Additive Distances Given T x T D y z w v If we know T and D, but do not know the length of each edge, we can reconstruct those lengths

  10. Reconstructing Additive Distances Given T x T y D z a w dvx + dwx = 2 dax + dvw v dax = ½ (dvx + dwx – dvw) day = ½ (dvy + dwy – dvw) D1 daz = ½ (dvz + dwz – dvw)

  11. Reconstructing Additive Distances Given T x T y 5 4 D1 b 3 z 3 a 4 c w 7 6 d(a, c) = 3 d(b, c) = d(a, b) – d(a, c) = 3 d(c, z) = d(a, z) – d(a, c) = 7 d(b, x) = d(a, x) – d(a, b) = 5 d(b, y) = d(a, y) – d(a, b) = 4 d(a, w) = d(z, w) – d(a, z) = 4 d(a, v) = d(z, v) – d(a, z) = 6 Correct!!! v D3 D2

  12. Distance Based Phylogeny Problem • Goal: Reconstruct an evolutionary tree from a distance matrix • Input: n x n distance matrix Dij • Output: weighted tree T with n leaves fitting D • If D is additive, this problem has a solution and there is a simple algorithm to solve it

  13. Find neighboring leavesi and j with parent k Remove the rows and columns of i and j Add a new row and column corresponding to k, where the distance from k to any other leaf m can be computed as: Using Neighboring Leaves to Construct the Tree Dkm = (Dim + Djm – Dij)/2 Compress i and j into k, iterate algorithm for rest of tree

  14. Finding Neighboring Leaves • To find neighboring leaves we simply select a pair of closest leaves.

  15. Finding Neighboring Leaves • To find neighboring leaves we simply select a pair of closest leaves. WRONG

  16. Finding Neighboring Leaves • Closest leaves aren’t necessarily neighbors • i and j are neighbors, but (dij= 13) > (djk = 12) • Finding a pair of neighboring leaves is • a nontrivial problem!

  17. Degenerate Triples • A degenerate triple is a set of three distinct elements 1≤i,j,k≤n where Dij + Djk = Dik • Element j in a degenerate triple i,j,k lies on the evolutionary path from i to k (or is attached to this path by an edge of length 0).

  18. Looking for Degenerate Triples • If distance matrix Dhas a degenerate triple i,j,k then j can be “removed” from D thus reducing the size of the problem. • If distance matrix Ddoes not have a degenerate triple i,j,k, one can “create” a degenerative triple in D by shortening all hanging edges (in the tree).

  19. Shortening Hanging Edges to Produce Degenerate Triples • Shorten all “hanging” edges (edges that connect leaves) until a degenerate triple is found

  20. Finding Degenerate Triples • If there is no degenerate triple, all hanging edges are reduced by the same amount δ, so that all pair-wise distances in the matrix are reduced by 2δ. • Eventually this process collapses one of the leaves (when δ = length of shortest hanging edge), forming a degenerate triple i,j,k and reducing the size of the distance matrix D. • The attachment point for j can be recovered in the reverse transformations by saving Dijfor each collapsed leaf.

  21. Reconstructing Trees for Additive Distance Matrices Trim(D, δ) for all 1 ≤ i ≠ j ≤ n Dij = Dij - 2δ

  22. AdditivePhylogeny Algorithm • AdditivePhylogeny(D) • ifD is a 2 x 2 matrix • T = tree of a single edge of length D1,2 • return T • ifD is non-degenerate • Compute trimming parameter δ • Trim(D, δ) • Find a triple i, j, k in D such that Dij + Djk = Dik • x = Dij • Remove jth row and jth column from D • T = AdditivePhylogeny(D) • Traceback

  23. AdditivePhylogeny (cont’d) Traceback • Add a new vertex v to T at distance x from i to k • Add j back to T by creating an edge (v,j) of length 0 • for every leaf l in T • if distance from l to v in the tree ≠ Dl,j • output “matrix is not additive” • return • Extend all “hanging” edges by length δ • returnT

  24. Neighbor Joining Algorithm • In 1987 Naruya Saitou and Masatoshi Nei developed a neighbor joining algorithm for phylogenetic tree reconstruction • Finds a pair of leaves that are close to each other but far from other leaves: implicitly finds a pair of neighboring leaves • Advantages: works well for additive and other non-additive matrices, it does not have the flawed molecular clock assumption

  25. Neighbor-Joining • Guaranteed to produce the correct tree if distance is additive • May produce a good tree even when distance is not additive Let C = current clusters. Step 1: Finding neighboring clusters Define: u(C) =1/(|C|-2) C’ 2C D(C, C0 ) u(C) measures separation of C from other clusters Want to minimize D(C1, C2) and maximize u(C1) + u(C2) Magic trick: Choose C1 and C2 that minimize D(C1, C2) - (u(C1) + u(C2) ) Claim: Above ensures that Dij is minimal iffi, j are neighbors Proof: Very technical, please read Durbin et al.! 1 3 0.1 0.1 0.1 0.4 0.4 4 2

  26. Algorithm: Neighbor-joining Initialization: For n clusters, one for each leaf node Define T to be the set of leaf nodes, one per sequence Iteration: Pick Ci, Cj s.t. D(Ci, Cj) – (u(C1) + u(C2)) is minimal Merge C1 and C2 into new cluster with |C1| + |C2| elements Add a new vertex C to T and connect to vertices C1 and C2 Assign length 1/2 (D(C1, C2) + (u(C1) - u(C2) ) to edge (C1, C) Assign length 1/2 (D(C1, C2) + (u(C2) - u(C1) ) to edge (C2, C) Remove rows and columns from D corresponding to C1 and C2; Add row and column to D for new cluster C Termination: When only one cluster

More Related