90 likes | 213 Views
Flows and Networks Plan for today (lecture 6):. Last time / Questions? Kelly / Whittle network Optimal design of a Kelly / Whittle network: optimisation problem Intermezzo: mathematical programming Optimal design of a Kelly / Whittle network: Lagrangian and interpretation
E N D
Flows and NetworksPlan for today (lecture 6): • Last time / Questions? • Kelly / Whittle network • Optimal design of a Kelly / Whittle network:optimisation problem • Intermezzo: mathematical programming • Optimal design of a Kelly / Whittle network:Lagrangian and interpretation • Optimal design of a Kelly / Whittle network: Solution optimisation problem • Optimal design of a Kelly / Whittle network: network structure • Summary • Exercises • Questions
Customer types : routes • Customer type identified route • Poisson arrival rate per type • Type i: arrival rate (i), i=1,…,I • Route r(i,1), r(i,2),…,r(i,S(i)) • Type i at stage s in queue r(i,s) • Fixed number of visits; cannot use Markov routing • 1, 2. or 3 visits to queue: use 3 types
Customer types : queue discipline • Customers ordered at queue • Consider queue j, containing nj jobs • Queue j contains jobs in positions 1,…, nj • Operation of the queue j:(i) Each job requires exponential(1) amount of service.(ii) Total service effort supplied at rate j(nj)(iii) Proportion j(k,nj) of this effort directed to job in position k, k=1,…, nj ; when this job leaves, his service is completed, jobs in positions k+1,…, nj move to positions k,…, nj -1.(iv) When a job arrives at queue j he moves into position k with probability j(k,nj + 1), k=1,…, nj +1; jobs previously in positions k,…, nj move to positions k+1,…, nj +1.
Customer types : equilibrium distribution • Transition ratestype i job arrival (note that queue which job arrives is determined by type)type i job completion (job must be on last stage of route through the network)type i job towards next stage of its route • Notice that each route behaves as tandem network, where each stage is queue in tandemThus: arrival rate of type i to stage s : (i)Let • State of the network: • Equilibrium distribution
Symmetric queues; insensitivity • Operation of the queue j:(i) Each job requires exponential(1) amount of service.(ii) Total service effort supplied at rate j(nj)(iii) Proportion j(k,nj) of this effort directed to job in position k, k=1,…, nj ; when this job leaves, his service is completed, jobs in positions k+1,…, nj move to positions k,…, nj -1.(iv) When a job arrives at queue j he moves into position k with probability j(k,nj + 1), k=1,…, nj +1; jobs previously in positions k,…, nj move to positions k+1,…, nj +1. • Symmetric queue is insensitive
Contents • Introduction; Markov chains • Birth-death processes; Poisson process, simple queue;reversibility; detailed balance • Output of simple queue; Tandem network; equilibrium distribution • Jackson networks;Partial balance • Sojourn time simple queue and tandem network • Performance measures for Jackson networks:throughput, mean sojourn time, blocking • Application: service rate allocation for throughput optimisationApplication: optimal routing • further reading[R+SN] chapter 3: customer types; chapter 4: examples Flows and network: summary stochastic networks
Exercises • [R+SN] 3.1.2, 3.2.3, 3.1.4.
Consider an open Jackson networkwith transition rates Assume that the service rates and arrival rates are given Let the costs per time unit for a job residing at queue j be Let the costs for routing a job from station i to station j be (i) Formulate the design problem (allocation of routing probabilities) as an optimisation problem. (ii) Provide the solution to this problem Exercise: Optimal design of Jackson network (1)
Consider an open Jackson networkwith transition rates Assume that the routing probabilities and arrival rates are given Let the costs per time unit for a job residing at queue j be Let the costs for routing a job from station i to station j be Let the total service rate that can be distributed over the queues be , i.e., (i) Formulate the design problem (allocation of service rates) as an optimisation problem. (ii) Provide the solution to this problem (iii) Now consider the case of a tandem network, and provide the solution to the optimisation problem for the casefor all j,k Exercise: Optimal design of Jackson network (2)