1 / 17

Quantum Convolutional Coding with Entanglement Assistance

Quantum Convolutional Coding with Entanglement Assistance. Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089. Mark M. Wilde. QEC07, Los Angeles, California (December 2007). Summary.

gordy
Download Presentation

Quantum Convolutional Coding with Entanglement Assistance

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quantum Convolutional Coding with Entanglement Assistance Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 Mark M. Wilde QEC07, Los Angeles, California (December 2007)

  2. Summary arXiv:0712.2223 arXiv:0708.3699 with Todd Brun with Hari Krovi and Todd Brun

  3. Convolutional Coding techniques have application in cellular and deep space communication ViterbiAlgorithmis most popular technique for determining errors Classical Convolutional Coding

  4. FIR Encoding Circuits Finite-durationinput streams producefinite-durationoutput streams

  5. IIR Encoding Circuits Finite-durationinput streams can produceinfinite-durationoutput streams

  6. Quantum Block Code Perform measurements that learn only about errors Encode qubits with ancillas

  7. Entanglement-Assisted Quantum Block Code Brun, Devetak, Hsieh, Science 314, 436-439 (2006).

  8. Quantum Convolutional Coding Ollivier, Tillich, PRL 91, 177902 (2003). Forney, Grassl, Guha, IEEE Trans. Inf. Theory 53, 865-880 (2007). Grassl, Rötteler, In proceedings of ISIT (2005,2006,2007).

  9. Entanglement-Assisted Quantum Convolutional Coding Wilde and Brun, arXiv:0712.2223 (2007).

  10. EAQCC Example 1

  11. Infinite-Depth Operations Implements [ 1+D-1 | 1/(1+D) ] Implements [ 1+D-1+D-3 | 1/(1+D+D3) ]

  12. EAQCC Example 2

  13. Classes of EAQCCs 1) Finite-depth encoding and decoding circuits 2) Finite-depth and infinite-depth encoding circuit Finite-depth decoding circuit 3) Finite-depth and infinite-depth encoding circuit Finite-depth and infinite-depth decoding circuit (infinite-depth operations only on Bob’s half of the ebits)

  14. Advantages of EAQCC Produce an EAQCC from two arbitrary classical binary convolutional codes: The rate and error-correcting properties of the classical codes translate to the EAQCC.(high-performance classical codes => high-performance quantum codes)

  15. Block Entanglement Distillation

  16. Convolutional Entanglement Distillation Wilde, Krovi, Brun, arXiv:0708.3699 (2007).

  17. Conclusion • Entanglement-assisted convolutional coding exploits entanglement to encode a stream of qubits • Importing classical convolutional coding theory should produce high-performance quantum codes • Explore the connection to quantum key distribution in more detail There is still much to explore in these areas (QEC07@USC)

More Related