1 / 36

On Optical Orthogonal Codes

On Optical Orthogonal Codes. or Cyclically Permutable Error-Correcting Codes (Gilbert). A.J. Han Vinck. content. 1. Optical Orthogonal codes properties 2. OOC transmission codes 3. Super OOCs 4. Alternatives. signature. Other users. noise. OPTICAL matched filter TRANSMITTER/RECEIVER.

gotzon
Download Presentation

On Optical Orthogonal Codes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. On Optical Orthogonal Codes or Cyclically Permutable Error-Correcting Codes (Gilbert) A.J. Han Vinck

  2. content • 1. Optical Orthogonal codes • properties • 2. OOC transmission codes • 3. Super OOCs • 4. Alternatives A.J. Han Vinck

  3. signature Other users noise OPTICAL matched filter TRANSMITTER/RECEIVER A.J. Han Vinck

  4. why Collect all the ones in the signature: 0 0 0 1 0 1 1 delay 0 0 0 0 1 0 1 1 delay 2 0 0 0 1 0 1 1 delay 3 weight w A.J. Han Vinck

  5. We want: • weight w large high peak • side peaks  1 • for other signatures cross correlation  1 A.J. Han Vinck

  6. Several possibilities A or 0 B or shifted C or another A.J. Han Vinck

  7. note For situation A: or 0 A sequence might look like: x 0 x x 0 0    For situation C: or another A sequence might look like: x y y x y    A.J. Han Vinck

  8. Optical Orthogonal Codes: definition • Property: x, y  {0, 1} AUTO CORRELATION CROSS CORRELATION x x y y cross shifted x x A.J. Han Vinck

  9. Important properties (for code construction) 1) All intervals between two ones must be different 1000001  = 1, 6 1000010  = 2, 5 1000100  = 3, 4 C(7,2,1) 2) Cyclic shifts give cross correlation  1 they are not in the OOC A.J. Han Vinck

  10. autocorrelation w = 3 0 0 0 1 0 1 1 signature x 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 3 1 1 1 side peak > 1 impossible correlation  2 A.J. Han Vinck

  11. Cross correlation 0 0 0 1 0 1 1signature x * * * 1 * * * signature y * * * 1 * * * * * * 1 * * ? Suppose that ? = 1 then cross correlation with x = 2 y contains same interval as x  impossible A.J. Han Vinck

  12. conclusion Signature in sync: peak of size w All other situations contributions  1 What about code parameters? A.J. Han Vinck

  13. Code size for code words of length n • # different intervals < n • must be different otherwise correlation  2 • For weight w vector: w(w-1) intervals • 1 1 0 1 0 0 0 1 1 0 1 0 00 • |C(n,w,1)|  (n-1)/w(w-1) ( = 6/6 = 1) 1, 2, 3, 4, 5, 6 A.J. Han Vinck

  14. Example C(7,2,1) 1000001  = 1, 6 1000010  = 2, 5 1000100  = 3, 4 A.J. Han Vinck

  15. Construction (n,w,1)-OOC IDEA: starting word 110100000 w=3, length n0 =9 1 2 Blow up intervals 1 1 0 1 0 0 0 0 0 0 *** 4 5 Parameter 1 0 0 0 1 0 0 0 0 1 0 *** m = 3 7 8 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 *** Proof OOC property: all intervals are different  correlation =1 A.J. Han Vinck

  16. Problem in construction • find good starting word • Find small value for blow up parameter A.J. Han Vinck

  17. result 1. Code construction: |C(n,w,1)| > 2n/(w-1)w3 2. Using difference sets as starting word: Code construction |C(n,w,1)| > 2n/(w-1)w2 problem: existance of difference sets Reference: IEICE, January 2002 Upperbound: |C(n,w,1)|  (n-1)/w(w-1) A.J. Han Vinck

  18. Difference set A difference set is : an ( n = w(w-1) + 1, w, 1 ) – OOC with a single code vector X0 Example: n = 7; w = 3 1 1 0 1 0 0 0 A.J. Han Vinck

  19. references Mathematical design solutions: ·projective geometry ( Chung, Salehi, Wei, Kumar) ·balanced incomplete block designs (R.N.M. Wilson) ·difference sets ( Jungnickel) Japanese reference: Tomoaki Ohtsuki ( Univ. of Tokyo) A.J. Han Vinck

  20. application All optical transmitter/ receiver is fast Use signature of OOC to transmit information A.J. Han Vinck

  21. Transmission of 1 bit/user User 1: 1000001 or 0000000 User 2: 1000010 or 0000000 (OOO) User 3: 1000100 or 0000000 2 users can lead to wrong decision at sample moment +: simple transmitter -: not balanced A.J. Han Vinck

  22. Model for UWB ( EWO) 1 or 0 * +3 = or -3 A.J. Han Vinck

  23. Transmitter / receiver(ref: Tomoaki Ohtsuki) data Data selector encoder laser Tunable optical delay line sequence encoder + hard limiter power splitter optical correlator - optical correlator decoder A.J. Han Vinck

  24. +/- + Simple correlator and encoder balanced: equal weight signalling - Power splitting Cross correlation? A.J. Han Vinck

  25. 2 problems User 1: 1100000 or 0110000 11 User 2: 1000010 or 0100001 User 3: 1000100 or 0100010 0 1 0100001|1000010 correlation 2 ! A.J. Han Vinck

  26. Super Optical Orthogonal Codes AUTO CORRELATION CROSS CORRELATION SUPER-CROSS CORRELATION A.J. Han Vinck

  27. Super-cross correlation y y  1 x y y‘  1 x Y‘ could be shifted version A.J. Han Vinck

  28. Property shift sensitive 1100000 1010000 is a S-OOC 1001000 shifted code 1000001 1000010 is not a S-OOC 1000100 A.J. Han Vinck

  29. conclusions • Optical Orthogonal Codes • have nice correlation properties • Super Optical Orthogonal Codes • additional constraint: less code words A.J. Han Vinck

  30. Alternatives: M-ary Prime code pulse at position i Symbol i 1 i  M Example: 123 231 312 213 321 132 111 222 333 permutation code + extension A.J. Han Vinck

  31. Prime Code properties Permutation code has minimum distance M-1 i.e. Interference = 1 Cardinality permutation code  M (M-1) + extention M Cardinality PRIME code  M2 BAD AUTO- and CROSS-CORRELATION A.J. Han Vinck

  32. M-ary Superimposed codes  M-1 code words should not produce a valid code word M-1 words Valid word N M M-1 words Valid word N  2M2 A.J. Han Vinck

  33. Example: general construction 3 1 1 2 1 1 1 3 1 1 2 1 1 1 3 1 1 2 N N  M(M-1) M A.J. Han Vinck

  34. Difference: identification-decypherable Decypherable: 1 0 N = 3 0 1 Ex: { (01),(01) } covers ( 1 1 ) 1 1 but uniquely decodable  ( 1 0 )  ( 0 1) Identification: 1 0 N = 2 0 1 Ex: { (01),(01) } covers ( 1 1 ) 1 1 A.J. Han Vinck

  35. Example ( honest ? ) 2 users may transmit 1 bit of info at the same time User 1 112 or 222 User 2 121 or 222 User 3 211 or 222 User 4 122 or 222 Sum rate = 2/6 RTDMA = 2/8 Example: receive { (1), (1,2), 2 } =? A.J. Han Vinck

  36. conclusions We showed: - different optical signalling methods - problems with OOC code design Future: performance calculations A.J. Han Vinck

More Related