370 likes | 627 Views
On Optical Orthogonal Codes. or Cyclically Permutable Error-Correcting Codes (Gilbert). A.J. Han Vinck. content. 1. Optical Orthogonal codes properties 2. OOC transmission codes 3. Super OOCs 4. Alternatives. signature. Other users. noise. OPTICAL matched filter TRANSMITTER/RECEIVER.
E N D
On Optical Orthogonal Codes or Cyclically Permutable Error-Correcting Codes (Gilbert) A.J. Han Vinck
content • 1. Optical Orthogonal codes • properties • 2. OOC transmission codes • 3. Super OOCs • 4. Alternatives A.J. Han Vinck
signature Other users noise OPTICAL matched filter TRANSMITTER/RECEIVER A.J. Han Vinck
why Collect all the ones in the signature: 0 0 0 1 0 1 1 delay 0 0 0 0 1 0 1 1 delay 2 0 0 0 1 0 1 1 delay 3 weight w A.J. Han Vinck
We want: • weight w large high peak • side peaks 1 • for other signatures cross correlation 1 A.J. Han Vinck
Several possibilities A or 0 B or shifted C or another A.J. Han Vinck
note For situation A: or 0 A sequence might look like: x 0 x x 0 0 For situation C: or another A sequence might look like: x y y x y A.J. Han Vinck
Optical Orthogonal Codes: definition • Property: x, y {0, 1} AUTO CORRELATION CROSS CORRELATION x x y y cross shifted x x A.J. Han Vinck
Important properties (for code construction) 1) All intervals between two ones must be different 1000001 = 1, 6 1000010 = 2, 5 1000100 = 3, 4 C(7,2,1) 2) Cyclic shifts give cross correlation 1 they are not in the OOC A.J. Han Vinck
autocorrelation w = 3 0 0 0 1 0 1 1 signature x 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 3 1 1 1 side peak > 1 impossible correlation 2 A.J. Han Vinck
Cross correlation 0 0 0 1 0 1 1signature x * * * 1 * * * signature y * * * 1 * * * * * * 1 * * ? Suppose that ? = 1 then cross correlation with x = 2 y contains same interval as x impossible A.J. Han Vinck
conclusion Signature in sync: peak of size w All other situations contributions 1 What about code parameters? A.J. Han Vinck
Code size for code words of length n • # different intervals < n • must be different otherwise correlation 2 • For weight w vector: w(w-1) intervals • 1 1 0 1 0 0 0 1 1 0 1 0 00 • |C(n,w,1)| (n-1)/w(w-1) ( = 6/6 = 1) 1, 2, 3, 4, 5, 6 A.J. Han Vinck
Example C(7,2,1) 1000001 = 1, 6 1000010 = 2, 5 1000100 = 3, 4 A.J. Han Vinck
Construction (n,w,1)-OOC IDEA: starting word 110100000 w=3, length n0 =9 1 2 Blow up intervals 1 1 0 1 0 0 0 0 0 0 *** 4 5 Parameter 1 0 0 0 1 0 0 0 0 1 0 *** m = 3 7 8 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 *** Proof OOC property: all intervals are different correlation =1 A.J. Han Vinck
Problem in construction • find good starting word • Find small value for blow up parameter A.J. Han Vinck
result 1. Code construction: |C(n,w,1)| > 2n/(w-1)w3 2. Using difference sets as starting word: Code construction |C(n,w,1)| > 2n/(w-1)w2 problem: existance of difference sets Reference: IEICE, January 2002 Upperbound: |C(n,w,1)| (n-1)/w(w-1) A.J. Han Vinck
Difference set A difference set is : an ( n = w(w-1) + 1, w, 1 ) – OOC with a single code vector X0 Example: n = 7; w = 3 1 1 0 1 0 0 0 A.J. Han Vinck
references Mathematical design solutions: ·projective geometry ( Chung, Salehi, Wei, Kumar) ·balanced incomplete block designs (R.N.M. Wilson) ·difference sets ( Jungnickel) Japanese reference: Tomoaki Ohtsuki ( Univ. of Tokyo) A.J. Han Vinck
application All optical transmitter/ receiver is fast Use signature of OOC to transmit information A.J. Han Vinck
Transmission of 1 bit/user User 1: 1000001 or 0000000 User 2: 1000010 or 0000000 (OOO) User 3: 1000100 or 0000000 2 users can lead to wrong decision at sample moment +: simple transmitter -: not balanced A.J. Han Vinck
Model for UWB ( EWO) 1 or 0 * +3 = or -3 A.J. Han Vinck
Transmitter / receiver(ref: Tomoaki Ohtsuki) data Data selector encoder laser Tunable optical delay line sequence encoder + hard limiter power splitter optical correlator - optical correlator decoder A.J. Han Vinck
+/- + Simple correlator and encoder balanced: equal weight signalling - Power splitting Cross correlation? A.J. Han Vinck
2 problems User 1: 1100000 or 0110000 11 User 2: 1000010 or 0100001 User 3: 1000100 or 0100010 0 1 0100001|1000010 correlation 2 ! A.J. Han Vinck
Super Optical Orthogonal Codes AUTO CORRELATION CROSS CORRELATION SUPER-CROSS CORRELATION A.J. Han Vinck
Super-cross correlation y y 1 x y y‘ 1 x Y‘ could be shifted version A.J. Han Vinck
Property shift sensitive 1100000 1010000 is a S-OOC 1001000 shifted code 1000001 1000010 is not a S-OOC 1000100 A.J. Han Vinck
conclusions • Optical Orthogonal Codes • have nice correlation properties • Super Optical Orthogonal Codes • additional constraint: less code words A.J. Han Vinck
Alternatives: M-ary Prime code pulse at position i Symbol i 1 i M Example: 123 231 312 213 321 132 111 222 333 permutation code + extension A.J. Han Vinck
Prime Code properties Permutation code has minimum distance M-1 i.e. Interference = 1 Cardinality permutation code M (M-1) + extention M Cardinality PRIME code M2 BAD AUTO- and CROSS-CORRELATION A.J. Han Vinck
M-ary Superimposed codes M-1 code words should not produce a valid code word M-1 words Valid word N M M-1 words Valid word N 2M2 A.J. Han Vinck
Example: general construction 3 1 1 2 1 1 1 3 1 1 2 1 1 1 3 1 1 2 N N M(M-1) M A.J. Han Vinck
Difference: identification-decypherable Decypherable: 1 0 N = 3 0 1 Ex: { (01),(01) } covers ( 1 1 ) 1 1 but uniquely decodable ( 1 0 ) ( 0 1) Identification: 1 0 N = 2 0 1 Ex: { (01),(01) } covers ( 1 1 ) 1 1 A.J. Han Vinck
Example ( honest ? ) 2 users may transmit 1 bit of info at the same time User 1 112 or 222 User 2 121 or 222 User 3 211 or 222 User 4 122 or 222 Sum rate = 2/6 RTDMA = 2/8 Example: receive { (1), (1,2), 2 } =? A.J. Han Vinck
conclusions We showed: - different optical signalling methods - problems with OOC code design Future: performance calculations A.J. Han Vinck