1 / 51

Nonstandard mesons

Nonstandard mesons. Stephen L. Olsen University of Hawai’i. tetra-quarks meson-meson molecules q q – q q diquark pairs q q-gluon hybrids nucleon-antinucleon baryonium. u. c. u. c. u. c. u. c. c. c. d. u. u. u. d. u. This talk.

gouveia
Download Presentation

Nonstandard mesons

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nonstandard mesons Stephen L. Olsen University of Hawai’i • tetra-quarks • meson-meson molecules • q q – q q diquark pairs • q q-gluon hybrids • nucleon-antinucleon baryonium u c u c u c u c c c d u u u d u

  2. This talk • Candidate non-standard mesons with hidden charm from Belle & BaBar • Candidate baryonium meson from BES c c u c u c probably no time for: d u u u d u

  3. Concentrate on “hidden charm” systems (i.e containing c & c) u c c c u c • standard cc mesons are: • best understood theoretically • narrow & non overlapping • cc systems are prolifically produced in B meson decays. c c Vcb b W- cosqC s CKM favored

  4. Thanks to KEKB, Belle has lots of B mesons(>1M BB pairs/day) >1fb -1/day Design: 10 34

  5. Charmonium primer These states have not yet been found Hadronic transitions DD(*) decays dominate G~wide (10’s of MeV) G(y’p+p-J/y) 70 keV G(y”p+p-J/y) 50 keV G(y’hJ/y)  5 keV SUF(3) violating G(y’p0J/y)  0.3 keV isospin violating These states have all been identified p0 h p+p- p+p- EM transitions G(E1)  100~300 keV Below DD(*) thresholds G~narrow (~<MeV ) G(allowed M1)  1 keV

  6. X(3872)p+p-J/y BK p+p-J/y y’p+p-J/y X(3872)p+p-J/y M(ppJ/y) –M(J/y) S.-K.Choi, S.L.Olsen et al (Belle) PRL 91 262001 (2003)

  7. The X(3872) is well establishedseen in 4 experiments CDF 9.4s 11.6s X(3872) D0 BaBar X(3872) hep-ex/0406022

  8. Is it a cc meson? If so, it must be one of these? 3872 MeV

  9. no obvious cc assignment hc” hc’ cc1’ y2 hc2 y3 M too low and G too small angular dist’n rules out 1+- 3872 G(gJ/y) way too small G(gcc1) too small;M(p+p-) wrong pp hc should dominate G( gcc2 & DD) too small SLO hep-ex/0407033

  10. go back to square 1 Determine JPC quantum numbers of the X(3872) with minimal assumptions

  11. JPC possibilities (for J ≤ 2)

  12. JPC possibilities0-- ruled out; JP=0+,1- & 2+ unlikely

  13. Strong evidence for C=+1 X(3872)gJ/y X(3872)p+p-p0J/y 12.4 ± 4.2 evts virtual w(782)? M(p+p-p0) Br(X3pJ/y) Br(X2pJ/y) = 1.0 ± 0.5 13.6 ± 4.4 X(3872)gJ/y evts (>4s significance) X(3872)p+p-J/y Bf(XgJ/y) Bf(XppJ/y) =0.14 ± 0.05 Fits to r(760) M(p+p-)

  14. JPC possibilities (C=-1 ruled out)

  15. Angular Correlations r Jz=0 J=0 X3872 J=0 K z Rosner (PRD 70 094023) Bugg (PRD 71 016006) Suzuki, Pakvasa (PLB 579 67) J/y

  16. ereJ/y k(erxeJ/y) 0++ 0-+ q qlp y c2/dof=18/9 c2/dof = 34/9 |cosq| c2/dof=34/9 |cosqlp| rule out 0++ & 0 -+ |cosy|

  17. JPC possibilities (0-+ & 0++ ruled out)

  18. M(pp) can distinguish r-J/y S- & P-waves P-wave: c2/dof = 71/39 S-wave: c2/dof = 43/39 (CL=0.1%) (CL= 28%) q* roll-off q*3 roll-off Shape of M(pp) distribution near the kinematic limit favors S-wave

  19. Possible JPC values (J-+ ruled out)

  20. X(3872)D0D0p0 ? D*0D0p0? • 1++ : DD* in an S-wave  q* • 2++ : DDp in a D-wave  q*5 Strong threshold suppression M(D0D0p0) 11.3±3.6 sig.evts (>4s) Bf(BKX)Bf(XDDp)=2.2±0.7±0.4x10-4

  21. Possible JPC values (2++ ruled out) 1++

  22. can it be a 1++ cc state? 1++cc1’ (the only possibility) Bf(Xp+p- J/y)>4% is very large for an isospin-violating channel 3872 p+p- (Isospin violating)

  23. Expectations forc’c1 G(c’c1 g J/y)  11 keVBarnes Godfrey PRD 69 054008 G(c’c1 p+p- J/y) = ?  G(y’  p0J/y)  0.3 keV(“educated” guess?) Bf(XgJ/y) Bf(XppJ/y)  30 ~ 40 Expect: >200x discrepancy Bf(XgJ/y) Bf(XppJ/y) can our “education” really be this bad? Measmnt: =0.14 ± 0.05 cc1’ component of X(3872) is few% (at most?)

  24. Intriguing fact lowest mass charmed meson lowest mass spin=1 charmed meson MX3872 =3872 ± 0.6 ± 0.5 MeV mD0 + m D0* = 3871.2 ± 1.0 MeV Deuson? deuteron-like DD* bound state? 2 loosely bound qq color singlets with M= mD + mD* - d c c D p D* u u one p exchange attractive for 1++ Tornqvist PLB 590, 209 (2004)

  25. X(3872) = D0D*0 bound state? • JPC = 1++ is favored • M ≈ mD0 + mD0* • Large isospin violation is natural (& was predicted):  |D0D*0> = 1/2(|10> - |00>) • G(XgJ/y) < G(XppJ/y) was predicted • G(XD0D0p0) too large? • Bf(B0K0X3872)/Bf(B+K+X3872) too large? Tornqvist PLB 590, 209 (2004) Equal mixture of I=1 & I =0 Swanson PLB 588, 189 (2004) Swanson PLB 598, 197 (2004) Braaten & Kusunoki PR D71, 074005 predict: <0.08 BaBar measurement (hep-ex/0507090): 0.5  0.3

  26. diquark-antidiquark? u c Maiani etal predict a doublet of states PRD 71,014028 (2005) d c Xu= Xd= u c d c B+K+Xu B0K0Xd BaBar BaBar Maiani et alpredict: DM = M(Xu) – M(Xd) = 8  3 MeV BaBar (hep-ex/0507090) reports: DM = 2.71.3 0.2 MeV

  27. Are there others?Is the X(3872) a one-of-a-kind curiousity? or the 1st entry in a new spectroscopy? Look at other B decays  hadrons+J/y: BK h J/y BK p J/y BK w J/y

  28. BK wJ/y in Belle “Y(3940)” M≈3940 ± 11 MeV G≈ 92 ± 24 MeV Mbc Mbc Mbc M(wJ/y) MeV S.K. Choi & S.L.Olsen et al. (Belle), PRL94, 182002 (2005)

  29. Y(3940): What is it? eg.Brambilla et al (QWG) hep-ph/0412158 • Charmonium? • Conventional wisdom: (SU(3)-violating) wJ/y decayshould not be a discovery mode for a cc state with mass above DD & DD* threshold! • cc-gluon hybrid? • predicted by QCD, • decays to DD and DD* are suppressed (“open-charm” thresh = mD + m D** = 4.3 GeV) • large hadron+J/y widths can occur • masses expected to be 4.3 ~ 4.4 GeV (higher than what we see) Horn & Mandula PRD 17 898 others

  30. BaBar’s Y(4260) 10.58 GeV M=4259  8 MeV G = 88  23 MeV 4.26 GeV not seen in s(e+e-hadrons) at Ecm =4.26 GeV Y(4260) BES s(e+e-hadrons) J/ sideband B. Aubert et al. (BaBar) hep-ph/0506081 J.Z. Bai et al. (BESII) PRL 88 101802 Well above DD & DD* threshold but wide & found in a suppressed mode??

  31. summary by a factor of more than 200! • X(3872): • Existence well established • JPC = 1++ • Br(Xp+p- J/y) too high for charmonium • Br(XD0D0p0) too high for molecule • Br(B0 KSX3872) also too high for molecule(?) • DM too small for diquarks? • Mass too low for hybrid still under study (M(Xu) (from B+K+Xu) - M(Xd) (from B0KSXd) The more we learn more about it the more puzzling it becomes.

  32. summary (cont’d) • Y(3940) Belle • G( Y3940 wJ/y) too high for charmonium • Mass too low for a hybrid • Y(4260) BaBar • G(y4260p+p-J/y) also way too high • 1--, but not seen in e+e- hadrons by factors of ~103

  33. Homeless mesons • X(3872) • Y(3940) • Y(4260) • … Mahalo enjoy mid-autumn festival in Hawaii 但願人長久千里共嬋娟

  34. Back-up slides

  35. Baryonium at BES??? d u u u d u

  36. Phys. Rev. Lett. 91, 022001 (2003) J/y g pp (at BES) acceptance weighted BW M(pp) +3 +5 -10 -25 M=1859 MeV/c2 G < 30 MeV/c2 (90% CL) 0 0.1 0.3 0.2 3-body phase space M(pp)-2mp (GeV)

  37. Baryonium potential & Wave fcn G.J. Dung & M.L. Yan hep-ph/0502127 Potential barrier “Rectangularized” Skyrmion-type potential I = 0, Jpc=0-+ pp annihilation M ~ 1860 MeV G ~ 16 MeV  large uncertainties -V0d(r) X  p+p- h’should be a strong channel

  38. M(p+p-h’) from J/y g p+p-h’ +- mass spectrum for +- &   modes 7.7 M = 183463 MeV G = 68  20 8 MeV BESII Preliminary

  39. _ Re-fit J/pp including FSI M = 1830.6  6.7 MeV  = < 153 MeV @90%C.L. I=0 FSI In good agreement with X(1835) Sirbirtsev et al. (PRD 71 054010 )

  40. Appendix • Other new hidden charm particles from Belle (near 3940!) • X(3940) • Z(3931)

  41. Other new particles from Belle e+e-J/y + X

  42. X(3940)DD* seen(DD & wJ/y not seen)

  43. gg  Z(3931) DD at Belle sin4q (J=2) 4111 evts (5.5) M=3931 4  2 MeV =208 3 MeV

  44. Z(3931) = cc1’(almost for sure) ? X(3940)  Y(3940) (maybe the hc’’)

  45. Jon Coleman Moriond-QCD March 2005 e+e-B+B- K-X0 244 fb-1 • Can measure absolute B.F.’s of B-K-X0 J/y Lower limit on BF(XJ/ypp) > 4.3% @ 90% C.L cc2 cc1 cc0 Very clear J/y and hc signals N J/y=258+- 42 N hc =266 +-42 • cc2,cc0<<cc1 • X(3872) production much lower than for other Charmonium states: • can set lower limit on B.F.

  46. Kinematic variables BK gJ/y Ecm/2 e+ e- B B ϒ(4S) Ecm/2 DE CM energy difference: BK gJ/y Beam-constrained mass: Mbc

  47. 1++ compute angles in X(3872) restframe 1++: sin2ql sin2c c2/dof = 11/9 ql K |cosql| c2/dof = 5/9 c |cosc| 1++ looks okay!

  48. M(gJ/y) look-back plot

  49. Fit cosqlp with 1++ MC c2/dof=11.9/9 |cosqlp|

  50. Y(3940): What is it (cont’d)? • a molecule? • M ≈ 2mDs • not seen in YhJ/y • (h contains ss) • width too large?? • no p exchange for DSDS c s s c ?? PRL 93, 041801 M(h J/y)

More Related