1 / 15

Gas Laws

Gas Laws. Robert Boyle. Jacques Charles. Amadeo Avogadro. Joseph Louis Gay-Lussac. The Combined Gas Law. The combined gas law expresses the relationship between pressure, volume and temperature of a fixed amount of gas. Boyle’s Law.

grace
Download Presentation

Gas Laws

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gas Laws Robert Boyle Jacques Charles Amadeo Avogadro Joseph Louis Gay-Lussac

  2. The Combined Gas Law The combined gas law expresses the relationship between pressure, volume and temperature of a fixed amount of gas.

  3. Boyle’s Law Pressure is inversely proportional to volume when temperature is held constant.

  4. The volume of a gas is directly proportional to temperature, and extrapolates to zero at zero Kelvin. (P = constant) Charles’s Law Temperature MUST be in KELVINS!

  5. Gay Lussac’s Law The pressure and temperature of a gas are directly related, provided that the volume remains constant. Temperature MUST be in KELVINS!

  6. For a gas at constant temperature and pressure, the volume is directly proportional to the number of moles of gas (at low pressures). V = an a = proportionality constant V = volume of the gas n = number of moles of gas Avogadro’s Law

  7. PV = nRT P = pressure in atm V = volume in liters n = moles R = proportionality constant = 0.08206 L atm/ mol·K T = temperature in Kelvins Ideal Gas Law Holds closely at P < 1 atm

  8. Real Gases At high pressure (smaller volume) and low temperature (attractive forces become important) you must adjust for non-ideal gas behavior using van der Waal’s equation. ­ ­ corrected pressure corrected volume Pideal Videal

  9. Gas Density … so at STP…

  10. Density and the Ideal Gas Law Combining the formula for density with the Ideal Gas law, substituting and rearranging algebraically: M = Molar Mass P = Pressure R = Gas Constant T = Temperature in Kelvins

  11. Gas Stoichiometry #1 If reactants and products are at the same conditions of temperature and pressure, then mole ratios of gases are also volume ratios. 3 H2(g) + N2(g)  2NH3(g) 3moles H2 +1mole N2 2moles NH3 3liters H2 + 1liter N2 2liters NH3

  12. Gas Stoichiometry #2 How many liters of ammonia can be produced when 12 liters of hydrogen react with an excess of nitrogen? 3 H2(g) + N2(g)  2NH3(g) 12 L H2 2 L NH3 = L NH3 8.0 3 L H2

  13. Gas Stoichiometry #3 How many liters of oxygen gas, at STP, can be collected from the complete decomposition of 50.0 grams of potassium chlorate? 2 KClO3(s)  2 KCl(s) + 3 O2(g) 50.0 g KClO3 1 mol KClO3 3 mol O2 22.4 L O2 122.55 g KClO3 2 mol KClO3 1 mol O2 = 13.7 L O2

  14. Gas Stoichiometry #4 How many liters of oxygen gas, at 37.0C and 0.930 atmospheres, can be collected from the complete decomposition of 50.0 grams of potassium chlorate? 2KClO3(s)  2KCl(s) + 3O2(g) 50.0 g KClO3 1 mol KClO3 3mol O2 0.612 = mol O2 122.55 g KClO3 2mol KClO3 = 16.7 L

  15. For a mixture of gases in a container, PTotal = P1 + P2 + P3 + . . . Dalton’s Law of Partial Pressures This is particularly useful in calculating the pressure of gases collected over water.

More Related