1 / 41

Population Switching and Charge Sensing in Quantum Dots : A case for Quantum Phase Transitions

Population Switching and Charge Sensing in Quantum Dots : A case for Quantum Phase Transitions. PRL 104, 226805 (2010). Moshe Goldstein (Bar-Ilan Univ., Israel) , Richard Berkovits (Bar-Ilan Univ., Israel) , Yuval Gefen (Weizmann Inst., Israel).

grady
Download Presentation

Population Switching and Charge Sensing in Quantum Dots : A case for Quantum Phase Transitions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Population Switching and Charge Sensing in Quantum Dots:A case forQuantum Phase Transitions PRL 104, 226805 (2010) Moshe Goldstein(Bar-Ilan Univ., Israel), Richard Berkovits (Bar-Ilan Univ., Israel), Yuval Gefen (Weizmann Inst., Israel) Support: Adams, BINA, GIF, ISF, Minerva, SPP 1285

  2. Outline • Introduction • Is population switching a QPT? • Coulomb gas analysis • A surprising twist: the effect of a charge sensor • Extensions; spin effects

  3. Quantum dots • Artificial atoms • Single electron transistors • “0D” systems: • Realizations: • Semiconductor heterostructures • Metallic grains • Carbon buckyballs & nanotubes • Single molecules

  4. R L Quantum dots:A theorist’s view Vg • Traditionalregimes: [Review: Alhassid, RMP ‘00] • Opendots, G>>D • Closeddots,G<<D • Last decade: intermediatedot-lead coupling,G<D • Interference (e.g., Fano) • Interactions (e.g., Kondo, populationswitching) D: level spacing; G: level width

  5. Level population n1, n2 1 2 Vg 2 0 e1 e2+U 1 energy R 2 L 2 1 1 Coulomb-blockade peak , g (spinless) Vg G1 G2 Coulomb-blockade valley 1

  6. Population switching energy 2 1 2 1 2 1 R L 2 1 n1, n2 1 Vg 0 e2+U e2 (spinless) [Baltin, Gefen, Hackenbroich & Weidenmüller ‘97, ‘99; Silvestrov & Imry ’00; … Sindel et al. ‘05 …]

  7. QD R QPC L Related phenomena • Charge sensing by QPC [widely used] • Phase lapses [Heiblum group: Yacoby et al. ‘95; Shuster et al. ‘97; Avinun-Kalish et al. ‘05] • See also: MG, Berkovits, Gefen & Weidenmüller, PRB ‘09

  8. Outline • Introduction • Is population switching a QPT? • Coulomb gas analysis • A surprising twist: the effect of a charge sensor • Extensions; spin effects

  9. Nature of the switching Is the switching abrupt? (at T=0) • Yes ?(1st order) quantum phase transition • No ? continuous crossover

  10. free energy Vg A limiting case narrow level empty • Decoupled narrow level: [Silvestrov & Imry ‘00] • Switching is abrupt • A single-particle problem: not a QPT narrow level filled • Many levels: [Marcus group: Johnson et al. ‘04] [Berkovits, von Oppen & Gefefn ‘05]

  11. Nature of the switching Is the switching abrupt? (at T=0, for afinite width narrow level) • Yes ?(1st order) quantum phase transition • No ? continuous crossover

  12. Numerical results • Hartree-Fock: Two solutions, switching still abrupt [Sindel et al. ’05, Golosov & Gefen `06, MG & Berkovits ‘07] • FRG, NRG, DMRG: probably not [?] [Meden, von Delft, Oreg et al. ’07; MG & Berkovits, unpublished]

  13. Outline • Introduction • Is population switching a QPT? • Coulomb gas analysis • A surprising twist: the effect of a charge sensor • Extensions; spin effects

  14. R L L R Basis transformation [Kim & Lee ’07, Kashcheyevs et al. ’07, Silvestrov & Imry ‘07] e.g., Electrostatic interaction Level widths:

  15. n 1 t – – – 0 + + + 1/T Coulomb gas expansion (I) Coulomb gas (CG) of alternatingpositive/negative charges [Anderson & Yuval ’69; Wiegmann & Finkelstein ’78; Matveev ’91; Kamenev & Gefen ’97] One level& lead: Electron enters/exits Fugacity T: temperature; x: short time cutoff; G=pr|t|2: level width

  16. R n1, n2 1 L t – – – – – – – + 0 + + + + + + 1/T Coulomb gas expansion (II) Two coupled CGs [Haldane ’78; Si & Kotliar ‘93] Two levels& leads

  17. 11 01 10 00 11 01 11 01 10 00 00 10 00 t 0 1/T Coulomb gas expansion (III) CG can be rewritten as: [Cardy ’81; Si & Kotliar ‘93]

  18. 11 01 10 00 RG analysis (I) • Generically (no symmetries): 15 coupled RG equations[Cardy ’81; Si & Kotliar ‘93] 6 eqs. 6 eqs. 3 eqs.

  19. RG analysis (II) • Solvable in Coulomb valley: • Three stages of RG flow: 11 10 01 (I) 00 (II) (III) Result: an effective Kondo model [Kim & Lee ’07, Kashcheyevs et al. ’07, ‘09, Silvestrov & Imry ‘07]

  20. Digression: The Kondo problem Realizations Magnetic impurity QD with odd electron number L  (spinful) • Hamiltonian • J~t2/U>0: exchange • hz: local magnetic field • Problem: divergences [Kondo ’64] • susceptibility: • Similarly: resistance, specific heat … D: bandwidth

  21. Sz 1/2 0 1/T t –1/2 – – – + + + Kondo: CG analysis • Anderson & Yuval[’69]: • Anisotropic model (Jz≠Jxy) • expand in Jxy: Coulomb gas of spin-flips

  22. Kondo: Phase diagram • RG equations: • Ferromagnetic Kondo: • impurity decoupled • susceptibility: c~c(J)/T+… • Anti-Ferromagnetic Kondo: • impurity strongly-coupled • susceptibility: c~1/TK+… Kosterlitz-Thouless transition TK: Kondo temperature

  23. Back to our problem … R R L L nR, nL 1 Vg 0 eL+U eL 11 (spinless) 10 01 • Pseudo-spin (orbital) Kondo • Anisotropic • Vgchanges effective level separation  switching 00

  24. Implications • Anti-Ferromagetic Kondo model • Gate voltagemagnetic field hz population switching is continuous (scale: TK) Noquantum phase transition [Kim & Lee ’07, Kashcheyevs et al. ’07, ‘09, Silvestrov & Imry ‘07]

  25. What was gained? FDM Haldane on the Coulomb gas expansion: “Though an expression such as [the Coulomb gas expansion] … could be taken as the starting point of a scaling theory …, the more direct ‘poor man’s’ approach … proves simpler and more complete in practice.” [J. Phys. C 11, 5015 (1978)]

  26. Outline • Introduction • Is population switching a QPT? • Coulomb gas analysis • A surprising twist: the effect of a charge sensor • Extensions; spin effects

  27. R L QPC But … population switching is discontinuous : 1st order quantum phase transition • Adding a charge-sensor(Quantum Point Contact): • 15 RG eqs. unchanged • Three-component charge Kosterlitz-Thouless transition

  28. S(w) w0 w 0 Reminder: X-ray edge singularity Absorption spectrum: energy • Without interactions: w0 • Anderson orthogonality catastrophe[’67]: e ––– noninteracting • Mahan exciton effect [’67]: ––– Anderson ––– Mahan

  29. X-ray singularity physics (I) R L Virtual fluctuations: e e

  30. X-ray singularity physics (I) R L Electrons repelled/attracted to filled/empty dot (Jz): e e Mahan exciton Anderson orthogonality vs. Jxy Scaling dimension: <1  relevant > Mahan wins: Switching is continuous

  31. R L QPC X-ray singularity physics (II) e e e Mahan exciton Anderson orthogonality Extra orthogonality + vs. Jxy Scaling dimension: >1  irrelevant < + Anderson wins: Switching is abrupt

  32. A different perspective • Detector constantlymeasures the level population • Population dynamics suppressed: Quantum Zeno effect • A sensormay induce a phase transition

  33. Noninvasive charge sensing? continuous switching L1 L1 R R QPC L2 QPC L2 nR, nL, gL nR, nL, gL 1 1 Vg Vg 0 0 eL+U eL eL+U eL Use Friedel’s sum rule! abrupt switching   TK GL GL [CIR: Meden & Marquardt ’06] GL GL

  34. L R QPC Perturbations • Finite T • Inter-dot hopping: First order transition  switching smeared linearly in T, tLR

  35. Outline • Introduction • Is population switching a QPT? • Coulomb gas analysis • A surprising twist: the effect of a charge sensor • Extensions; spin effects

  36. Related models Bose-Fermi Kondo [Kamenev & Gefen ’97, Le Hur ’04, Borda et al. ’05, Florens et al. ’07, ‘08, …]  B F L   R • 2-impurity Kondo with zexchange [Andrei et al. ’99, Garst et al. ‘94]

  37. L R QPC Extensions (I) • Dot-lead interactions: • Mahan&Anderson • Repulsion continuous switching

  38. R L QPC Extensions (II) • Luttinger-liquid leads: • Repulsion abrupt switching • Luttinger-liquid&dot-lead interaction: • Edge singularity given by CFT & Bethe ansatz[Ludwig & Affleck ’94; MG, Weiss & Berkovits, EPL ‘09] • Many novel effects even for single level, single lead [MG, Weiss & Berkovits, PRB ’05, ’07, ’08; J. Phys. Conden. Matt. ‘07; Physica E ’10; PRL ‘10]

  39. R L Switching in a Luttinger liquid (I) • Density Matrix RG calculations: • Luttinger liquid parameter: g=3/4 • Soft boundary conditions:

  40. Switching in a Luttinger liquid (II) • Finite size scaling: W

  41. Conclusions • Population switching: • Usually: steep crossover, noquantum phase transition • Adding a charge sensor: 1st orderquantum phase transition • Laboratory for various effects: • Anderson orthogonality, Mahan exciton, quantum Zeno effect, entanglement entropy; • Kondo

More Related