1 / 111

Non-equilibrium dynamic critical scaling of the quantum Ising chain

Non-equilibrium dynamic critical scaling of the quantum Ising chain. Michael Kolodrubetz Princeton University In collaboration with: Bryan Clark, David Huse David Pekker Krishnendu Sengupta. Quantum state of transverse-field Ising model during slow ramp is…. Universal

Download Presentation

Non-equilibrium dynamic critical scaling of the quantum Ising chain

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Non-equilibrium dynamic critical scaling of the quantum Ising chain Michael Kolodrubetz Princeton University In collaboration with: Bryan Clark, David Huse David Pekker KrishnenduSengupta

  2. Quantum state of transverse-field Ising model during slow ramp is… • Universal • Non-equilibrium • Experimentally viable • Non-thermal • Dephasing resistant

  3. Classical Phase Transitions “Magnetization” Landau-Ginzburg functional

  4. Classical Phase Transitions “Magnetization”

  5. Classical Phase Transitions “Magnetization”  Thermal fluctuations

  6. Quantum Phase Transitions One-dimensional transverse-field Ising chain

  7. Quantum Phase Transitions One-dimensional transverse-field Ising chain Paramagnet (PM) Ferromagnet (FM)

  8. Quantum Phase Transitions One-dimensional transverse-field Ising chain Paramagnet (PM) Ferromagnet (FM)  Quantum fluctuations

  9. Critical Scaling [Smirnov, php.math.unifi.it/users/paf/LaPietra/files/Chelkak01.ppt]

  10. Critical Scaling [Smirnov, php.math.unifi.it/users/paf/LaPietra/files/Chelkak01.ppt]

  11. Critical Scaling , Dynamiccritical exponent Correlation lengthcritical exponent [Smirnov, php.math.unifi.it/users/paf/LaPietra/files/Chelkak01.ppt]

  12. Critical Scaling Ising: , Dynamiccritical exponent Correlation lengthcritical exponent

  13. Critical Scaling Ising: Order parametercritical exponent , Dynamiccritical exponent Correlation lengthcritical exponent

  14. Critical Scaling Ising: Order parametercritical exponent , Dynamiccritical exponent Correlation lengthcritical exponent

  15. Kibble-Zurek ramps Ramp rate

  16. Kibble-Zurek ramps Ramp rate

  17. Kibble-Zurek ramps Ramp rate Adiabatic

  18. Kibble-Zurek ramps Ramp rate Impulse Adiabatic

  19. Kibble-Zurek ramps Ramp rate Impulse Adiabatic

  20. Kibble-Zurek ramps Ramp rate Impulse Adiabatic

  21. Kibble-Zurek ramps Ramp rate Impulse Adiabatic

  22. Kibble-Zurek ramps Ramp rate Impulse Adiabatic

  23. Kibble-Zurek ramps

  24. Kibble-Zurek ramps

  25. Kibble-Zurek ramps Ramp rate Impulse Adiabatic

  26. Kibble-Zurek ramps Ramp rate Impulse Adiabatic

  27. Kibble-Zurek ramps Ramp rate Impulse Adiabatic

  28. Kibble-Zurek ramps Ramp rate Impulse Adiabatic

  29. Transverse-field Ising chain Sachdev: “Quantum Phase Transitions”

  30. Transverse-field Ising chain Wigner fermionize Sachdev: “Quantum Phase Transitions”  phase

  31. Transverse-field Ising chain Wigner fermionize Sachdev: “Quantum Phase Transitions”  phase

  32. Transverse-field Ising chain Wigner fermionize • Quadratic  Integrable Sachdev: “Quantum Phase Transitions”  phase

  33. Transverse-field Ising chain Wigner fermionize • Quadratic  Integrable • Hamiltonian conserves parity for each mode k Sachdev: “Quantum Phase Transitions”  phase

  34. Transverse-field Ising chain Wigner fermionize • Quadratic  Integrable • Hamiltonian conserves parity for each mode k • Work in subspace where parity is even Sachdev: “Quantum Phase Transitions”  phase

  35. Transverse-field Ising chain Wigner fermionize • Quadratic  Integrable • Hamiltonian conserves parity for each mode k • Work in subspace where parity is even Sachdev: “Quantum Phase Transitions”  phase

  36. Transverse-field Ising chain

  37. Transverse-field Ising chain

  38. Transverse-field Ising chain

  39. Transverse-field Ising chain

  40. Transverse-field Ising chain

  41. Transverse-field Ising chain

  42. Transverse-field Ising chain Low energy, long wavelength theory

  43. Kibble-Zurek ramps Low energy, long wavelength theory? Ramp rate Impulse Adiabatic

  44. Kibble-Zurek ramps Low energy, long wavelength theory Ramp rate Impulse Adiabatic

  45. Kibble-Zurek ramps Low energy, long wavelength theory Ramp rate Impulse Adiabatic

  46. Kibble-Zurek scaling limit Schrödinger Equation OR Observable Fixed

  47. Kibble-Zurek scaling limit

  48. Kibble-Zurek scaling limit

  49. Kibble-Zurek scaling limit

  50. Kibble-Zurek scaling limit

More Related