320 likes | 484 Views
Polarized Thermal Emission from Interstellar Dust. John Vaillancourt Roger Hildebrand, Larry Kirby (U. Chicago) Giles Novak, Megan Krejny, Hua-bai Li (Northwestern) Darren Dowell (JPL/Caltech) Jackie Davidson, Jessie Dotson (NASA Ames) Martin Houde (U. Western Ontario)
E N D
Polarized Thermal Emission from Interstellar Dust John Vaillancourt Roger Hildebrand, Larry Kirby (U. Chicago) Giles Novak, Megan Krejny, Hua-bai Li (Northwestern) Darren Dowell (JPL/Caltech) Jackie Davidson, Jessie Dotson (NASA Ames) Martin Houde (U. Western Ontario) Alex Lazarian (U. Wisconsin - Madison) 12Septembre
Overview • Polarization by emission in molecular clouds • Polarization spectra • 60 - 1000 m = 300 - 5000 GHz • Extension to … • Dark clouds and the diffuse ISM • Longer wavelengths: ~ 3 cm, ~ 1 GHz • New instruments (WMAP, Planck, SHARP, HAWC/SOFIA)
Absorption vs. Emission: dense & diffuse regions Polarization by absorption UV-Vis-NIR Diffuse ISM Polarization by emission FIR-MM Dense ISM Hildebrand 2002; Heiles 2000; Dotson et al. 2000, 2005
Step 1: Internal Alignment Step 2: Angular Momentum Alignment Grain Alignment • Suprathermal rotation (Purcell 1979) • Erot » kTgas • H2 ejection (Purcell 1979) • radiative torques • (Draine & Weingartner 1996) Larmor precession See reviews by Roberge 2004, Lazarian & Yan 2004, Astrophysics of Dust, ASP Conf. Ser. 309.
Limits of Polarization by Absorption Visible extinction, AV (mag) Background star polarization near dark clouds: efficiency of grain alignment drops quickly for AV > 1 - 2 mag Consistent with radiative torques from interstellar radiation field (ISRF) (Lazarian, Goodman, & Myers 1997; Arce et al. 1998; Whittet et al. 2001) Polarization (%) • How do we explain FIR polarization in dense clouds with AV ~ 10 - 30 ? • embedded stars • radiative torques more efficient for large grains; up to Av ~ 10 • (Cho & Lazarian 2005 astroph/0505571) Arce et al. 1998
Loss of alignment in dense clouds? Polarized Flux (P F) Schleuning 1998 OMC-1 • Pabs = Pemis • Polarized flux traces aligned grains in dense regions
Alignment near embedded stars W3 350 m W51 • Polarized flux (grayscale) vs. total flux (contours) • W51 - PF maximum coincident with total flux maximum • W3 - PF maximum coincident with H II region (W3A), not total flux (H II region is source of UV photons & radiative torques) W3A Vaillancourt et al., in prep. Schluening et al. 2000
Dust properties & Polarization spectra • Extinction & polarization both drop with wavelength in near-IR, but diverge in UV • Large (> 0.1 m) grains are better aligned than small grains • Silicate & water spectral features are polarized • Line shapes Grain shapes • oblate spheroids, axes ratio 0.3 < a/b < 0.9 • Carbon spectral features unpolarized • Silicate grains are better aligned than graphite (carbon) grains • Far-IR/sub-mm polarization spectrum has a minimum • multiple domains of aligned & unaligned grains at multiple temperatures. See reviews by Whittet (2003, 2005)
Magnetic field vs. Wavelength W3 W51 Dotson et al. 2000 Dotson et al. 2005 Schleuning et al. 2000 (350 m grayscale/contours) Chrysostomou 2002 850 m 60 m, 100 m, 350 m,
Measured Polarization Spectra in Cloud Envelopes (Vaillancourt 2002; Matthews et al. 2002)
Expected Polarization Spectra(Hildebrand et al. 1999) Dust emission from • multiple grain species at • multiple temperatures Dust emission from • a single grain species at • a single temperature yields a flat spectrum in the FIR/SMM TA > TB, pA < pB TA > TB, pA > pB
Model of Molecular Clouds A) Near embedded stars - warm dust, aligned via radiative torques B) Cooler dust away from stars; optically opaque clumps C) Cold surface layers exposed to the interstellar radiation field (ISRF) TA > TB > TC pA pC > pB ISRF C B B A
Testing the Mixture ModelSpectralEnergyDistributions Temperature (K) Log(Relative Column Density) T1, Cold Component T=15 - 35 K OMC-1 T2, Warm Component T=35 - 55 K Polarization (%), Flux (Jy/beam) 28 K BNKL 52 K M42 KHW (Vaillancourt 2002)
OMC-1 Relative Polarizing Power pcold/phot p1 / p2 OMC-1 Declination (arcmin) T=35 - 55 K Polarization (%), Flux (Jy/beam) BNKL 28 K M42 Trapezium 52 K KHW (Vaillancourt 2002)
Dense vs. Diffuse ISM • Molecular clouds • Dense, hot, turbulent • Power sources: stars, turbulence, ISRF • IR Cirrus (Milky Way & external galaxies) • Diffuse, cool, little/no turbulence • Power source: ISRF, isotropic • All grains exposed to same environment
IRAS 100m N. Gal. Pole (FDS99) Infrared Cirrus Clouds • Finkbeiner, Davis, & Schlegel (FDS99) -- high latitude dust • T = 9.5 K, = 1.7 (silicate) • T = 16 K, = 2.7 (graphite) • If silicate is polarized and graphite unpolarized then … • Polarization spectrum rises with increasing wavelength
Polarimetry with SOFIA • Stratospheric Observatory for Infrared Astronomy • HAWC - SOFIA First Light infrared camera (2007) • 53, 88, 155, 215 m • SuperHAWC (2009 - 2010 ?) • HAWC upgraded to polarimeter 1) Split pol. Components and use single array … or 2) Add dual superconducting detector arrays http://astro.uchicago.edu/hawc http://www.sofia.usra.edu
Infrared Cirrus with (Super)HAWC • 10-100 MJy/sr @ 100-200 m • Scientific Objectives • Are grains aligned / polarized? • Polarization Spectrum - which dust components are aligned ? • Is cirrus gravitationally bound? • Are clumps & filaments sub- or super- critical?
SHARP - a polarization module for the SHARC-II camerahttp://lennon.astro.northwestern.edu/CSOpol August 2005 deployment at Caltech Submm Observatory - Mauna Kea • 1’ 1’ F.O.V. • 12 12 pixels • 9’’ at 350 m • 11’’ at 450 m SHARC-II M82 SHARC-II 12 32 detector array SHARP Mars
M82 SHARP Science • Sensitivity: 1% pol. error in 5 hours: • 2.7 Jy point source • 0.46 Jy / pixel ~ 150 MJy/sr over 1’ FOV • Brightest cirrus clouds approach 300 MJy/sr at 350 m • Find polarization spectra minimum (350 & 450 m) • Greater than, less than, or equal to 350 m ? • And more … • Dust and magnetic fields in external galaxies • Sgr A* and Galactic center • Turbulence in giant molecular clouds • Low-mass star formation Hertz
Microwave Polarization SpectrumExtending the Mixture Model • Microwave flux excess (1-100 GHz) - “Foreground X” • Kogut et al. 1996, de Oliveira-Costa et al. 1997; Leitch et al. 1997 • Excess in microwave flux beyond contributions from thermal dust, free-free, and synchrotron emission • Strong correlation with dust emission (IRAS-100, DIRBE-240) • Possible sources • Electric dipole emission from small (< 0.001 m) “spinning dust” grains (Draine & Lazarian 1998) • Magnetic dipole emission from large (0.1 - 10 m) magnetic “vibrating dust” grains (Draine & Lazarian 1999) • How much does the excess contribute to diffuse flux? • Is the excess emission polarized ?
Microwave excess in dark & diffuse clouds Lynds 1622 Diffuse ISM |b| < 4o vibrating dust Both spinning & vibrating dust consistent with excess thermal free-free free-free soft-synchrotron spinning dust (Hildebrand & Kirby 2004; Finkbeiner 2004) (Finkbeiner, Langston, & Mintner 2004)
Polarization of Microwave Excess Spinning Dust Vibrating Dust Intrinsically different polarization spectra allow for test of spinning vs. vibrating dust models Lazarian & Draine 2000 Draine & Lazarian 1999
Frequency (GHz) GHz • electric dipole - spinning dust • magnetic dipole - vibrating dust Total Flux Thermal Dust (16, 9 K) free-free m GHz vib. dust pol. cold pol. vib. dust unpol. Relative Polarization warm unpol. free-free unpol. spin. dust unpol. spin. dust pol. m Wavelength (micron)
Summary • Polarization in dense clouds -- magnetic alignment of dust • Support for radiative torques to achieve suprathermal rotation • FIR/SMM polarization spectrum -- multiple domains of aligned & unaligned grains at multiple temperatures • Need polarization observations of diffuse ISM clouds & extension of spectrum to microwave • Possible with new instruments in next several years (WMAP, Planck, SHARP, HAWC/SOFIA) • Polarization spectrum can distinguish between grain emission models
Frequency (GHz) • New • Old Beamsize (arcminutes) Wavelength (m) Future of FIR-MM Spectropolarimetry
Polarization by absorption (UV, Visible, NIR) Slide from A. Goodman: http://cfa-www.harvard.edu/~agoodman/ppiv/
Polarization by emission (FIR, SMM, MM) Slide from A. Goodman: http://cfa-www.harvard.edu/~agoodman/ppiv/
SHARP Science • Predicted sensitivities • 1% pol. error in 5 hours: • 2.7 Jy point source • 0.46 Jy / pixel • 150 MJy/sr over 1’ FOV SuperHAWC M82 ~1 arcmin HAWC SHARP Hertz ~1 arcmin
Polarization by extinction UV-Visible-IR, diffuse ISM (Heiles 2000)
Polarization by emissionFIR-MM dense ISM Hertz @ CSO (e.g. Schleuning 1998, Dotson et al 2005)