520 likes | 772 Views
Electron acceleration by Langmuir turbulence. Peter H. Yoon U. Maryland, College Park. Outline. Laboratory Beam-Plasma Experiments Beam-plasma instability & Langmuir turbulence Solar wind electrons Conclusions. Part 1. LABORATORY BEAM-PLASMA EXPERIMENTS.
E N D
Electron acceleration by Langmuir turbulence Peter H. Yoon U. Maryland, College Park
Outline • Laboratory Beam-Plasma Experiments • Beam-plasma instability & Langmuir turbulence • Solar wind electrons • Conclusions
Part 1. LABORATORY BEAM-PLASMA EXPERIMENTS
Alexeff et al., Hot-electron plasma by beam-plasma interaction, PRL, 10, 273 (1963). 5 keV DC electron beam interacting with plasma yields 250 keV X ray photons.
Tarumov et al., Investigation of a hydrogen plasma with “hot” electrons, Sov. Phys. JETP,25, 31 (1967).
During the discharge phase the hot electron component was 1/10, which increased to 1/3 in the decay phase.
Levitskii and Shashurin, Spatial development of plasma-beam instability, Sov. Phys. JETP, 25, 227 (1967).
Whelan and Stenzel, Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system, Phys. Fluids, 28, 958 (1985).
Outline • Laboratory Beam-Plasma Experiments • Beam-plasma instability & Langmuir turbulence • Solar wind electrons • Conclusions
Part 2. BEAM-PLASMA INSTABILITY AND LANGMUIR TURBULENCE
Bump-in-tail instability Langmuir Turbulence generated by beam-plasma interaction
Langmuir oscillation Ion-sound wave
Ion-sound wave t E(x,t) x
Langmuir wave t E(x,t) x
1D approxiation Ions (protons) are taken as a quasi-steady state, and the electrons are made of two components, one background Gaussian distribution, and a tenuous beam component.
Background (thermal) electrons Beam electrons
Bump-in-tail instability
Bump-on-tail instability • A. Vedenov, E. P. Velikhov, R. Z. Sagdeev, Nucl. Fusion 1, 82 (1961). • W. E. Drummond and D. Pines, Nucl. Fusion Suppl. 3, 1049 (1962).
Bump-in-tail instability
Weak turbulence theory L. M. Gorbunov, V. V. Pustovalov, and V. P. Silin, Sov. Phys. JETP 20, 967 (1965) L. M. Al’tshul’ and V. I. Karpman, Sov Phys. JETP 20, 1043 (1965) L. M. Kovrizhnykh, Sov. Phys. JETP 21, 744 (1965) B. B. Kadomtsev, Plasma Turbulence (Academic Press, 1965) V. N. Tsytovich, Sov. Phys. USPEKHI 9, 805 (1967) V. N. Tsytovich, Nonlinear Effects in Plasma (Plenum Press, 1970) V. N. Tsytovich, Theory of Turbulent Plasma (Consultants Bureau, 1977) A. G. Sitenko, Fluctuations and Non-Linear Wave Interactions in Plasmas (Pergamon, 1982)
Discrete-particle (collisional) effect ~ g = 1/(nlD3)
Long-time behavior of bump-on-tail Langmuir instability P. H. Yoon, T. Rhee, and C.-M. Ryu, Self-consistent generation of superthermal electrons by beam-plasma interaction, PRL 95, 215003 (2005).
Outline • Laboratory Beam-Plasma Experiments • Beam-plasma instability & Langmuir turbulence • Solar wind electrons • Conclusions
Part 3. SOLAR WIND ELECTRONS
2007 January 9 Linghua Wang, Robert P. Lin, Chadi Salem
fe(v) Electron Velocity Distribution By Linghua Wang, Davin Larsen, Robert Lin
Outline • Laboratory Beam-Plasma Experiments • Beam-plasma instability & Langmuir turbulence • Solar wind electrons • Conclusions
Part 4. CONCLUSIONS
Beam-plasma interaction is a fundamental problem in plasma physics. • Laboratory experiment shows electrons accelerated by beam-plasma interaction. • Electron beam-excited Langmuir turbulence theory adequately explains the laboratory results and predict the formation of energetic tail distribution. • Solar wind electrons feature energetic tail population confirming Langmuir turbulence acceleration theory.