170 likes | 313 Views
SCAPE: S hape C ompletion and A nimation PE ople. Stanford University Dragomir Anguelov Praveen Srinivasan Daphne Koller Sebastian Thrun Jim Rodgers UC, Santa Cruz James Davis. Shape Completion. Animation PEople. Overview. Non-Linear Optimization.
E N D
SCAPE: Shape Completion and Animation PEople Stanford University Dragomir Anguelov Praveen Srinivasan Daphne Koller Sebastian Thrun Jim Rodgers UC, Santa Cruz James Davis
Overview Non-Linear Optimization Training Data Set Data Acquired Black Box Complete Meshes Human Pose/Shape Parameters
Black Box Pose Deformation Model Non-rigid and rigid deformation Shape Deformation Model Variation across different individuals
Pose Deformation Model Rigid Transform RL[k] Non-Rigid Transform Qk
Y3,k V3,k K-th Tri Y2,k V2,k Y1,k Mesh Reconstruction argminΣkΣj=2,3 || RiL[k]Qikv’jk – (yjk – y1k) ||2 y1, …, ym [Sumner et. al. 2004] Deformation Transfer for Triangle Meshes
Learning Parameter Q(R) argminΣkΣj=2,3 || RikQikv’kj – vikj ||2+ {Qi1…QiP} wsΣk1, k2 adjI(Lk1 = Lk2)||Qik1 – Qik2||2 = argmin Reconstruction_Cost + {Qi1…QiP} Smoothness_Cost
Parameters of Pose Model Black Box Pose Deformation Model Human Parameters Pose Parameters Q
Shape Deformation Model Reconstruction argminΣkΣj=2,3 || RikSikQik(R)v’kj – vikj ||2 {Y1…Ym} V’k,3 V’k,3 V’k,2 V’k,2 Sik
Learning Parameter S argminΣkΣj=2,3 || RikSikQikv’kj – vikj ||2+ {Si} wsΣk1, k2 adj||Sik1 – Sik2||2 argmin Reconstruction_Cost + {Si} Smoothness_Cost Si = φU,μ(βi) = Uβi +μ
Parameters of Shape Model Estimation of Human Model Black Box Pose Deformation Model Shape Deformation Model Human Parameters Pose Parameters Q Shape Parameters U, μ
Estimation of Human Model EH[Y] = argminΣkΣj=2,3 || Rkφ(β)Qkv’jk– (yjk –y1k) ||2 y1, …, ym Q-coefficient Rotation β- mesh coefficient U-EigenVector, μ-mean
Shape-Completion / Animation Training Data Set R, β + EH[Y] Q, U, μ EH[Y] + wzΣL||yL - zL||2
Limitation • Trained Model (Linear Regression Model) vs. particular pose/shape • Susceptible to local-minimum(?) • Skeleton Based