380 likes | 422 Views
Learn about sorting algorithms like Merge Sort and Quick Sort, and tree structures such as binary trees. Dive into real Java code examples. Explore the efficiency of Merge Sort versus Quick Sort and understand binary trees in computer science.
E N D
CompSci 105 SS 2005 Principles of Computer Science Lecture 19: Trees Lecturer: Santokh Singh
Revision - Sorting O(2n) O(n3) Selection Sort O(n2) Merge Sort O(n log n) Faster Code O(n) O(log n) O(1)
0 1 2 3 4 5 6 7 C O M P U T E R mergeSort( theArray, first, last ) if (first < last ) { mid = (first + last ) / 2 mergesort(theArray, first, mid) mergesort(theArray, mid+1, last) merge(theArray(first, mid, last ) } Real Java Code, Textbook, p. 394-396
4 2 2 2 1 1 1 1 1 1 Revisision - Merge Sort 8 items 4 2 1 1 Analysis, Textbook, p. 393-398
Quick Sort Algorithm Analysis Trees Introduction General Tree Structures Binary Trees Reference-Based Implementation
Revision - Partitioning (as seen in L8) ≥p p <p 0 1 2 3 4 8 3 9 1 7 3 1 7 8 9 Textbook, p. 399
Quicksort ≥p p <p Textbook, p. 399
0 1 2 3 4 5 6 7 C O M P U T E R Java Code, Textbook, pp. 405-407, Description, Textbook, pp. 398-400
0 1 2 3 4 5 6 7 C O M P U T E R 0 1 2 3 4 5 6 7 C O M P U T E R Java Code, Textbook, pp. 405-407, Description, Textbook, pp. 398-400
0 1 2 3 4 5 6 7 C O M P U T E R 0 1 2 3 4 5 6 7 C O M P U T E R 1 2 3 4 5 6 7 E M O U T E R Java Code, Textbook, pp. 405-407, Description, Textbook, pp. 398-400
0 1 2 3 4 5 6 7 C O M P U T E R 0 1 2 3 4 5 6 7 C O M P U T E R 1 2 3 4 5 6 7 E M O U T E R 1 2 4 5 6 7 E M T E R U Java Code, Textbook, pp. 405-407, Description, Textbook, pp. 398-400
0 1 2 3 4 5 6 7 C O M P U T E R 0 1 2 3 4 5 6 7 C O M P U T E R 1 2 3 4 5 6 7 E M O U T E R 1 2 4 5 6 7 E M T E R U 4 5 6 2 T E R M Java Code, Textbook, pp. 405-407, Description, Textbook, pp. 398-400
0 1 2 3 4 5 6 7 C O M P U T E R 0 1 2 3 4 5 6 7 C O M P U T E R 1 2 3 4 5 6 7 E M O U T P R 1 2 4 5 6 7 E M T P R U 4 5 6 2 T P R M 4 5 P T Java Code, Textbook, pp. 405-407, Description, Textbook, pp. 398-400
Quicksort 0 1 2 3 4 5 6 7 C O M P U T E R C O M P U T E R C E M O U T P R C E M O T P R U C E M O T P T R C E M O P T U R C E M O P T U R Textbook, pp. 398-400
Quicksort Complexity 0 1 2 3 4 5 6 7 A B C D E F G H Textbook, pp. 408-410
Partitioning O M P U T E R Textbook, p. 401-404
Partitioning O M P U T E R O M P U T E R Textbook, p. 401-404
Partitioning O M P U T E R O M P U T E R Textbook, p. 401-404
Partitioning O M P U T E R O M P U T E R O M P U T E R Textbook, p. 401-404
Partitioning O M P U T E R O M P U T E R O M P U T E R O M P U T E R Textbook, p. 401-404
Partitioning O M P U T E R O M P U T E R O M P U T E R O M P U T E R O M E U T P R Textbook, p. 401-404
Partitioning O M P U T E R O M P U T E R O M P U T E R O M P U T E R O M E U T P R O M E U T P R Textbook, p. 401-404
Partitioning O M P U T E R O M P U T E R O M P U T E R O M P U T E R O M E U T P R O M E U T P R E M O U T P R Textbook, p. 401-404
Mergesort: Efficiency: Quicksort vs. Mergesort Quicksort:
Sorting O(n log n) O(n2) Merge Sort Selection Sort Quicksort (Worst) Quicksort (Average)
Comparing Sorting Algorithms Quicksort Merge Sort Bubble Sort Selection Sort Insertion Sort
Quick Sort Algorithm Analysis Trees Introduction General Tree Structures Binary Trees Reference-Based Implementation
Nodes Edges Root Leaf Parent Child Siblings Anscestor Descendant Subtrees Height Terminology A B C D E F G H I Textbook, p. 423
A B C D E F G H I Recurisve Definition A tree is a root node attached to a set of trees
A B C D E F G H I Node: Subtree References public class TreeNode { Object item; TreeNode[] subTrees; }
Node: First Child Next Sibling public class TreeNode { Object item; TreeNode firstChild; TreeNode nextSibling; } A B C D E F G H I
Binary Trees Textbook, p. 423-4
Binary Trees A binary tree is either empty or is a root node storing an item attached to a binary tree called the left subtree and a binary tree called the right subtree Textbook, p. 423-4
Binary Trees A binary tree is either empty or is a root node storing an item attached to a binary tree called the left subtree and a binary tree called the right subtree Textbook, p. 423-4
Binary Tree Node (Ref based) public class TreeNode { Object item; TreeNode left; TreeNode right; }
Binary Tree ADT TreeNode createBinaryTree( ) Object getRootItem( ) TreeNode getLeft ( ) TreeNode getRight ( ) setLeft ( TreeNode ) setRight ( TreeNode ) setRootItem( Object ) B A C Alternative definition, Textbook, p. 430-431
// Example of painting beautiful binary trees in java applications:- public void paint(Graphics g){ if(root!= null) draw(1, getWidth()/2, 40,180,80,root, g ); // Recursive method } public void draw(int order, int x, int y, int xGap, int yGap,BinaryTreeNode e,Graphics g){ if (e.left()!=null){ int leftX = x-xGap; // draws to left now int leftY = // How do we draw child downwards in the application? g.drawLine(x,y,leftX,leftY); // draw the connecting line draw( order+1,leftX, leftY, xGap/2, yGap,e.left(),g); // recursion // int order need not be used – but can be used for depth } if (e.right()!=null){ // just do similarly for right child now } g.setColor(Color…..); // What circle border color do you like? g.fillOval(x-size, y-size, 2*size, 2*size); g.setColor(Color…..); // Inner color of circle g.fillOval(x-size+1, y-size+1, 2*size-2, 2*size-2); g.setColor(Color….); // Color of values displayed g.drawString(""+e.value(),…, …); // display the value correctly }