1.09k likes | 1.25k Views
National Taiwan Ocean University MSVLAB Department of Harbor and River Engineering. Null field integral approach for engineering problems with circular boundaries. J. T. Chen Ph.D. 終身特聘教授 Taiwan Ocean University Keelung, Taiwan Dec.26, 15:30-17:00, 2007 交通大學 機械系 邀請演講 交大機械 2007.ppt.
E N D
National Taiwan Ocean University MSVLAB Department of Harbor and River Engineering Null field integral approach for engineering problems with circular boundaries J. T. Chen Ph.D. 終身特聘教授 Taiwan Ocean University Keelung, Taiwan Dec.26, 15:30-17:00, 2007 交通大學 機械系 邀請演講 交大機械2007.ppt
Overview of numerical methods Domain Boundary MFS,Trefftz method MLS, EFG IE DE PDE- variational 針 灸 把 脈 開刀 2
Number of Papers of FEM, BEM and FDM 6 2 1 (Data form Prof. Cheng A. H. D.)
Growth of BEM/BIEM papers (data from Prof. Cheng A.H.D.)
Top ten countries of BEM and dual BEM • BEM USA (3569) , China (1372) , UK, Japan, Germany, France, Taiwan (580), Canada, South Korea, Italy (No.7) • Dual BEM (Made in Taiwan) UK (124), USA (98), Taiwan (70), China (46), Germany, France, Japan, Australia, Brazil, Slovenia (No.3) (ISI information Apr.20, 2007)
Top ten countries of FEM, FDM and Meshless methods • FEM USA(9946), China(4107), Japan(3519), France, Germany, England, South Korea, Canada, Taiwan(1383), Italy • Meshless methods USA(297), China(179), Singapore(105), Japan(49), Spain, Germany, Slovakia, England, Portugal, Taiwan(28) • FDM USA(4041), Japan(1478), China(1411), England, France, Canada, Germany, Taiwan (559), South Korea, India (ISI information Apr.20, 2007)
Active scholars on BEM and dual BEM • BEM Aliabadi M H (UK, Queen Mary College) Chen J T(Taiwan, Ocean Univ.) 113 SCI papers 479citing Mukherjee S (USA, Cornell Univ.) Leisnic D(UK, Univ. of Leeds) Tanaka M (Japan, Shinshu Univ.) • Dual BEM (Made in Taiwan) Aliabadi M H (UK, Queen Mary Univ. London) Chen J T (Taiwan, Ocean Univ.) Power H (UK, Univ. Nottingham) (ISI information Apr.20, 2007)
Top 25 scholars on BEM/BIEM since 2001 NTOU/MSV Taiwan 北京清華姚振漢教授提供(Nov., 2006)
(Interior and exterior Acoustics) SH wave (exterior acoustics) (Inclusions) Research topics of NTOU / MSV LAB using null-field BIEs (2005-2007) (2008-2011) Null-field BIEM NUMPDE revision Navier Equation Laplace Equation Helmholtz Equation Biharmonic Equation BiHelmholtz Equation EABE MRC,CMES ASME JAM 2006 JSV Elasticity (holes and/or inclusions) (Plate with circulr holes) (Potential flow) (Torsion) (Anti-plane shear) (Degenerate scale) (Free vibration of plate) Indirect BIEM Screw dislocation (Stokes flow) JCA CMAME 2007 (Free vibration of plate) Direct BIEM JoM ASME EABE (Beam bending) (Inclusion) (Piezoleectricity) Green function for an annular plate SDEE ICOME 2006 SH wave Impinging canyons Degenerate kernel for ellipse (Flexural wave of plate) Torsion bar(Inclusion) Imperfect interface Green function of`circular inclusion (special case:static) CMC SH wave Impinging hill Added mass Image method (Green function) Green function of half plane (Hole and inclusion) Previous work (done) Interested topic Present project Water wave impinging circular cylinders Effective conductivity URL: http://ind.ntou.edu.tw/~msvlab E-mail: jtchen@mail.ntou.edu.tw海洋大學工學院河工所力學聲響振動實驗室 Frame2007-c.ppt
Research collaborators • Dr. I. L. Chen (高海大) Dr. K. H. Chen (宜蘭大學) • Dr. S. Y. Leu Dr. W. M. Lee (中華技術學院) • Mr. S. K. Kao Mr. Y. Z. Lin Mr. S. Z. Hsieh • Mr. H. Z. Liao Mr. G. N. Kehr (2007) • Mr. W. C. Shen Mr. C. T. Chen Mr. G. C. Hsiao (2006) • Mr. A. C. Wu Mr. P. Y. Chen (2005) • Mr. Y. T. Lee Mr. S. K. Kao • Mr. S. Z. Shieh Mr. Y. Z. Lin
Top 25 scholars on BEM/BIEM since 2001 北京清華姚振漢教授提供(Nov., 2006)
哲人日已遠 典型在宿昔C B Ling (1909-1993) 林致平院士(數學力學家) C B Ling (mathematician and expert in mechanics) 省立中興大學第一任校長 林致平校長(民國五十年~民國五十二年) 林致平所長(中研院數學所) 林致平院士(中研院) PS: short visit (J T Chen) of Academia Sinica 2006 summer `
Outlines • Motivation and literature review • Mathematical formulation • Expansions of fundamental solution and boundary density • Adaptive observer system • Vector decomposition technique • Linear algebraic equation • Numerical examples • Conclusions
Motivation Numerical methods for engineering problems FDM / FEM / BEM / BIEM / Meshless method BEM / BIEM (mesh required) Treatment of singularity and hypersingularity Boundary-layer effect Convergence rate Ill-posed model 除四舊 Mesh free for circular boundaries ?
Motivation and literature review BEM/BIEM Improper integral Singular and hypersingular Regular Fictitious BEM Bump contour Limit process Fictitious boundary Null-field approach CPV and HPV Collocation point Ill-posed
Present approach Degenerate kernel Fundamental solution No principal value CPV and HPV Advantages of degenerate kernel • No principal value 2. Well-posed 3. No boundary-layer effect 4. Exponetial convergence
Engineering problem with arbitrary geometries Straight boundary Degenerate boundary (Chebyshev polynomial) (Legendre polynomial) Circular boundary (Fourier series) (Mathieu function) Elliptic boundary
Motivation and literature review Analytical methods for solving Laplace problems with circular holes Special solution Bipolar coordinate Conformal mapping Chen and Weng, 2001, “Torsion of a circular compound bar with imperfect interface”, ASME Journal of Applied Mechanics Honein, Honein and Hermann, 1992, “On two circular inclusions in harmonic problem”, Quarterly of Applied Mathematics Lebedev, Skalskaya and Uyand, 1979, “Work problem in applied mathematics”, Dover Publications Limited to doubly connected domain
Fourier series approximation • Ling (1943) - torsion of a circular tube • Caulk et al. (1983) - steady heat conduction with circular holes • Bird and Steele (1992) - harmonic and biharmonic problems with circular holes • Mogilevskaya et al. (2002) - elasticity problems with circular boundaries
Contribution and goal • However, they didn’t employ the null-field integral equationand degenerate kernels to fully capture the circular boundary, although they all employed Fourier series expansion. • To develop a systematic approach for solving Laplace problems with multiple holes is our goal.
Outlines (Direct problem) • Motivation and literature review • Mathematical formulation • Expansions of fundamental solution and boundary density • Adaptive observer system • Vector decomposition technique • Linear algebraic equation • Numerical examples • Conclusions
Boundary integral equation and null-field integral equation Interior case Exterior case Degenerate (separate) form
NTUCE Ó Definitions of R.P.V., C.P.V. and H.P.V.using bump approach • R.P.V. (Riemann principal value) • C.P.V.(Cauchy principal value) • H.P.V.(Hadamard principal value)
Principal value in who’s sense • Riemann sense (Common sense) • Lebesgue sense • Cauchy sense • Hadamard sense (elasticity) • Mangler sense (aerodynamics) • Liggett and Liu’s sense • The singularity that occur when the base point and field point coincide are not integrable. (1983)
Two approaches to understand HPV Differential first and then trace operator (Limit and integral operator can not be commuted) Trace first and then differential operator (Leibnitz rule should be considered)
Bump contribution (2-D) U T s s 0 x x 0 L s M s x x
Bump contribution (3-D) 0` s s x x 0 s s x x
Outlines (Direct problem) • Motivation and literature review • Mathematical formulation • Expansions of fundamental solution and boundary density • Adaptive observer system • Vector decomposition technique • Linear algebraic equation • Numerical examples • Degenerate scale • Conclusions
Gain of introducing the degenerate kernel Degenerate kernel Fundamental solution CPV and HPV interior exterior No principal value?
Expansions of fundamental solution and boundary density • Degenerate kernel - fundamental solution • Fourier series expansions - boundary density
Separable form of fundamental solution (1D) Separable property continuous discontinuous
Boundary density discretization Fourier series Ex . constant element Present method Conventional BEM
Outlines • Motivation and literature review • Mathematical formulation • Expansions of fundamental solution and boundary density • Adaptive observer system • Vector decomposition technique • Linear algebraic equation • Numerical examples • Conclusions
collocation point Adaptive observer system
Outlines • Motivation and literature review • Mathematical formulation • Expansions of fundamental solution and boundary density • Adaptive observer system • Vector decomposition technique • Linear algebraic equation • Numerical examples • Conclusions
Vector decomposition technique for potential gradient True normal direction Non-concentric case: Special case (concentric case) :
Outlines • Motivation and literature review • Mathematical formulation • Expansions of fundamental solution and boundary density • Adaptive observer system • Vector decomposition technique • Linear algebraic equation • Numerical examples • Conclusions
Linear algebraic equation where Index of collocation circle Index of routing circle Column vector of Fourier coefficients (Nth routing circle)
kth circular boundary xm Physical meaning of influence coefficient mth collocation point on the jth circular boundary jth circular boundary cosnθ, sinnθ boundary distributions Physical meaning of the influence coefficient
Flowchart of present method Potential gradient Vector decomposition Degenerate kernel Fourier series Adaptive observer system Potential of domain point Collocation point and matching B.C. Analytical Fourier coefficients Linear algebraic equation Numerical
Outlines • Motivation and literature review • Mathematical formulation • Expansions of fundamental solution and boundary density • Adaptive observer system • Vector decomposition technique • Linear algebraic equation • Numerical examples • Conclusions
Numerical examples • Laplace equation (EABE 2006, EABE2006,EABE 2007) (CMES 2006, ASME 2007, JoM2007, CMC) (MRC 2007, NUMPDE 2007,ASME 2007) • Eigen problem (JCA) • Exterior acoustics (CMAME 2007, SDEE 2008) • Biharmonic equation (JAM, ASME 2006, IJNME) • Plate vibration (JSV 2007)
Laplace equation • Steady state heat conduction problems • Electrostatic potential of wires • Flow of an ideal fluid pass cylinders • A circular bar under torque • An infinite medium under antiplane shear • Half-plane problems
Steady state heat conduction problems Case 1 Case 2
Case 1: Isothermal line Exact solution (Carrier and Pearson) FEM-ABAQUS (1854 elements) Present method (M=10) BEM-BEPO2D (N=21)
Convergence test - Parseval’s sum for Fourier coefficients Parseval’s sum