180 likes | 194 Views
Prokaryotes are single-celled organisms without a nucleus, classified into Archaea and Bacteria domains. Archaea thrive in extreme environments, while Bacteria exhibit diverse shapes and sizes, such as rod, sphere, or spiral. Their cell walls differ in composition, resulting in Gram-positive (violet) and Gram-negative (red) staining. Understanding their structures and functions sheds light on their roles in various environments. Prokaryotes reproduce asexually through binary fission and derive nutrition from the environment for cellular functions.
E N D
What are Prokaryotes? • It includes two Major Domains: Archaea and Bacteria • Prokaryotes are single-celled organisms that do not have a membrane-bound nucleus, and can live in nearly every environment on Earth. • Although tiny, prokaryotes differ greatly in their genetic traits, their modes of nutrition, however, their habitats are similar. • Based on genetic differences, prokaryotes are grouped in two domains: Domain Archaea and Domain Bacteria.
1. Domain: Archaea Archaea are extremophiles, “مُحب للظروف القاسية” of extreme environments and can be classified into: a)- Extreme halophilesمُحب للملوحة: live in such saline places as the Great Salt Lake and the Dead Sea. Some species require an extremely saltyشديدة الملوحة environment to grow. b)- Extreme thermophilesمُحب للحرارة live in hot environments. The optimum temperatures for most thermophiles are 60 - 80°C.
شبه نواة الريبوزومات غشاء بلازمى الجدار الخلوى الكبسولة الأسواط 2. Domain: Bacteria Bacteria occur in many shapes and sizes. Bacteria of four shapes: rod-shaped, sphere-shaped, spiral-shaped, or filamentous-shaped. الأهداب
Plasma membrane Cell Wall Capsule Ribosomes Nucleoid Cytoplasm (Cytosol) Prokaryotic Cell
Shapes of Bacteria • Bacteria occur in many shapes and sizes. Most bacteria have one of three basic shapes: rod-shaped, sphere-shaped, or spiral-shaped. • Spiral shaped bacteria in the form of spirilla(singular, spirillum) or vibrio (comma like). • Sphere-shaped bacteria are called cocci(singular, coccus). An example of cocci is Micrococcus luteus. Cocci are single or aggregate cells in different shapes. • Rod-shaped bacteria are called bacilli(singular, bacillus). An example of bacilli is Escherichia coli. Bacilli are single or aggregate cells in different shapes also.
It is a tool for identifying تعريف bacteria, based on differences in their cell walls. A)- Gram-positive (Gram +ve) bacteria: Their cell walls have large amountsكمية كبيرةof peptidoglycans that react with Gram’s stain (appear violet-stained تـُصبغ بنفسجيا). The Gram’s stain: صبغة جرام
B)- Gram-negative(Gram -ve) bacteria: their cell walls have no or small amount of peptidoglycan. So, do not react or very weakly react withGram’s stain (appear red-stained تصبغ بالأحمر) The Gram’s stain: صبغة جرام
The Gram’s stain: صبغة جرام • Gram Stain • Most species of bacteria are classified into two categories based on the structure of their cell walls as determined by a technique called the Gram stain. • Gram-positive bacteria have a thick layer of peptidoglycan in their cell wall, and they appear violet under a microscope after the Gram-staining procedure. • Gram-negative bacteria have a thin layer of peptidoglycan in their cell wall, and they appear reddish-pink under a microscope after the Gram-staining procedure.
Gram Staining of Bacteria Gram +ve bacteria: have Large amount of peptidoglycan that stained violet. Gram –ve bacteria: Have small amount or no peptidoglycan stainedred. • Most Gram-negative species are pathogenic (ممرضة ) more threatening (أكثر خطورة) than gram-positive species. • Gram-negative bacteria are commonly more resistant (أكثر ممانعة) than gram-positive species to antibiotics للمضادات الحيوية.
I - the bacterial capsule • Many prokaryotes (bacteria) secrete a sticky protective layer called capsule outside the cell wall. • Capsule has the following functions وظائف: • Adhere تثبيت bacterial cells to their substratum السطح. • Increase bacterial resistance المقاومة to host defenses مناعة العائل. • Stickتلصق)) bacterialcells togetherwhen live incolonies. • Protect تحمى bacterial cell.
II - The bacterial cell wall • In all prokaryotes, the functions of the cell wall are as following: • maintains تحافظ the shape of the cell, • affords physical protection الحماية الطبيعيةتوفر • prevents the cell from bursting (إنفجار) in a hypotonic environment البيئة ذات التركيز الأسموزى المنخفض. • Most bacterial cell walls contain peptidoglycan (a polymer of modified sugars cross-linked by short polypeptides). • The walls of Archaea lack (تـفـتـقـد) peptidoglycan.
Reproduction of Bacteria التكاثر في البكتريا • Prokaryotes reproduce (تـتـكاثر) only asexually(لاجنسيا) by binary fission(الإنقسـام الثـنائي البسيط). • A single cell produces a colony of offspring.
Nutrition of Prokaryotes التغذية في بدائيات النواة • Nutrition refers to how an organism obtains energy and a carbon source from the environment to build the organic molecules of its cells. • Prokaryotes are grouped (صُنٍفـَت)into four categories (أنواع)according to how they obtain energy and carbon
Nutrition of Prokaryotes التغذية فى بدائيات النواة • Phototrophs(ضوئية التغذية):Organisms that obtain energy from light. • Chemotrophs(كيميائية التغذية):Organisms that obtain energy from chemicals in their environment. • Autotrophs(ذاتية التغذية):Organisms that use CO2 as a carbon source. • Heterotrophs(متعدد التغذية):Organisms that use organic nutrients as a carbon source.
There are four major modes of nutrition • Photoautotrophs(ذاتية التغذية الضوئية): use light energy as an energy source, and CO2 as a carbon source to synthesize (تخلق) organic compounds. • Chemoautotrophsذاتية التغذية الكيميائية)):usechemical inorganic substances as an energy source, and CO2 as a carbon source. • Photoheterotrophs(متعدد التغذية الضوئية):use lightas an energy source, and organic substances as carbon sources. • Chemoheterotrophs(متعدد التغذية الكيميائية): use organic substances as a source for both energy and carbon.
Organic compounds as Carbon Source CO2 as Carbon Source Prokaryotic modes of nutrition Based on Carbon sourceand Energy source that can be used by a prokaryotic organism to synthesize organic compounds. Prokaryotes Autotrophs Heterotrophs Photo-autotroph Chemo-autotroph Photo-Heterotroph Chemo-Heterotroph - Light as energy source -CO2 as C source - Chemicals as energy source -CO2 as C source - Light as energy source -Organic compounds as C source - Chemicals as energy source - Organic compounds as C source