150 likes | 243 Views
Given. m<1 = m<2. 2. m<1 + m<2 = 180. Def. Supp < ‘ s. 3. m<2 + m<2 = 180. Substitution. Given: m<1 = m<2 #2 Prove: l ┴ n. 4. 2m<2 = 180. Combine Like Terms. 5. m<2 = 90. Div prop =. 6. l ┴ n. Def. ┴ Lines. <ABD + <DBC = 180. E. F. D. A. C. B.
E N D
Given • m<1 = m<2 2. m<1 + m<2 = 180 Def. Supp <‘s 3. m<2 + m<2 = 180 Substitution Given: m<1 = m<2 #2 Prove: l ┴ n 4. 2m<2 = 180 Combine Like Terms 5. m<2 = 90 Div prop = 6. l ┴ n Def. ┴ Lines
<ABD + <DBC = 180 E F D A C B Def. of Supplementary Angles
If B is the midpoint of AC then AB = BC E F D A C B Definition of Midpoint
<ABD + <DBF = <ABF E F D A C B Angle Addition Postulate
If B is the midpoint of AC then ½ AC = BC E F D A C B Midpoint Theorem
<ABD = < ABD E F D A C B Reflexive Property
<COD = <HOG C B D A O E H G F Def. of Vertical Angles
If <COD = <HOG then <HOG = <COD C B D A O E H G F Symmetric Property of Equality
If <BOC + <COE = 90 C B D A O E H G F
If <BOC + <COE = 90 C B D A O E H G F Def. of Complementary Angles
C D B A E M E Given <BMC = 30 and <DME = 30, are any lines ? ┴
C D B A E M E Given <BMC = 45 and <DME = 45, are any lines ? ┴
C D B A E M E Given <BMC = 50 and <DMC = 40, are any lines ? ┴
B C A D M F E Given MD bisects <CME, m<BMA = 30 Find: m<AMF, m<CMB, m<DMF, m<DMB
#14-17 C B D x° A O E y° H G F