1 / 37

Antiinfection immunity

Antiinfection immunity. J. Ochotná. Defence against extracellular pathogens. Defence against extracellular pathogens. bacteria (gram-negative, gram-positive cocci, bacilli), unicellular parasites for their elimination is necessary opsonization (C3b, lectins, antibodies ...)

gunnar
Download Presentation

Antiinfection immunity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Antiinfection immunity J. Ochotná

  2. Defence against extracellular pathogens

  3. Defence against extracellular pathogens • bacteria (gram-negative, gram-positive cocci, bacilli), unicellular parasites • for their elimination is necessary opsonization (C3b, lectins, antibodies ...) • neutrophilic granulocytes are chemotactic attracting to the site of the infection (C5a, C3a and chemotactic products of bacteria) • absorbed bacteria are destroyed by the microbicidal systems (products of NADP-H oxidase, hydrolytic enzymes and bactericidal substances in lysosomes)

  4. phagocytes produce proinflammatory cytokines (IL-1, IL-6, TNF) that induce an increase in temperature, metabolic response of the organism and synthesis of acute phase proteins • in later stages of infection are stimulated antigen-specific mechanisms • plasma cells initially produce IgM isotype after isotype switching produce IgG1 and IgA (opsonization) • sIgA protect against intestinal and respiratory infections by bacteria • bacteria with a polysaccharide capsule may cause T-independent IgM antibody production (after the establishment to the bacteria activate the classical complement path)

  5. after infection persist IgG, IgA (protective effect) and memory T and B lymphocytes • in the defense against bacterial toxins apply neutralizing antibodies (Clostridium tetani and botulinum ...) • "indirect toxins - bacterial Lipopolysaccharide (LPS) stimulates big number of monocytes to release TNF, which can cause septic shock • extracellular bacterial infections are especially at risk individuals with disorders in the function of phagocytes, complement and antibody production

  6. Defence against intracellular pathogens

  7. Defense against intracellular pathogens • bacteria, fungi and unicellular parasites • intracellular parasites are resistant to the microbicidal mechanisms of phagocytes • macrophages, which absorbed them, produce IL-12 → TH1 differentiation, production of IFNg and membrane TNF → activation of macrophages and induction of iNOS • plasma cells under the influence of IFNg produce IgG2, immune complexes containing IgG2 bind to Fc receptors on macrophages and thus stimulate them-

  8. in the defense against intracelular parasites, which escape from phagolysosomes apply TC lymphocytes • intracellular microorganisms infections are at risk individuals with certain disorders of phagocytes and defects of T lymphocytes

  9. Defense against intracellular pathogens

  10. Anti-viral defence

  11. Anti-viral defence • interferons - in infectedcellsisinducedproductionofIFNa and IFNb (preventsviralreplication and in uninfectedcells cause the anti-virus status); IFNgstimulatestheconversion to activatedmacrophages (iNOS)

  12. NK cells - ADCC (Antibody-dependent cell-mediated cytotoxicity) = cytotoxicreactiondepends on theantibodies; the NK-lymphocyterecognizes cell opsonizedwithIgG by stimulationFc receptor CD16 and thenactivatecytotoxicmechanisms (degranulation) • infectedmacrophagesproduceIL-12 (a strongactivatorof NK cells)

  13. in the defense against cytopathic viruses mostly applied antibodies: • sIgA inhibit mucosal adhesion of viruses (defense against respiratory viruses and enteroviruses) • neutralizing IgG and IgM antibodies activate the classical way of complement, which is capable of some viruses lysis • IgA and IgG derived in viral infection have a preventive effect in secondary infection

  14. effector TC lymphocytes destroy infected cells in direct contact (granzym/perforin; FasL) and by produced cytokines (lymfotoxin) • some viruses after infection integrate into the host genome, where persist for years (varicella zoster, EBV, papillomavirus) • by these infections are at risk individuals with T lymphocyte immunodeficiency and with combined immune disorders • increased susceptibility to herpes infections in individuals with dysfunction of NK cells

  15. Defense against parasites

  16. Defense against protozoa parasites Toxoplasma gondii, Leishmania, Trypanosoma defense against protozoa parasites is similar to bacteria extracellular parasites - antibodies intracellular parasites - TH1 lymphocytes and activated macrophages

  17. Defense against multicellular parasites

  18. Defense against multicellular parasites • contactofmast cells, basophils and eosinophilswith parasite antigens • TH2 stimulationunderthe influence of IL-4 (mast cells and other APC stimulated by parasite) • TH2 stimulate B cellswith BCR-specific parasite antigens • isotypeswitchingunderthe influence of IL-4 to IgE • IgEbind to FceRI on mast cells and basophils(„antigen-specificreceptors“)

  19. establish of multivalent antigen (multicellular parasite) using the IgE to highafinity Fc receptor for IgE (FcRI) aggregation of several molecules FcRI • initiate mast cell degranulation (cytoplasmic granules mergers with the surface membrane and release their contents) • activation of arachidonic acid metabolism (leukotriene C4, prostaglandin PGD2) - amplification of inflammatory responses • cytokine production by mast cell (TNF, TGF, IL-4, 5,6 ...)

  20. Activation of mast cell

  21. in laterstages are activated TH1 and antibodiesofotherclassesare produced • eosinophils use againstparasitesextracellularbactericidalsubstancesreleasedfromgranules (eosinophilcationic protein, protease) • eosinophils fagocyte complexesofparasiticparticleswithIgE via theirreceptorsforIgE

  22. External regulation of immune response

  23. Causal treatment a) Stem cell transplantation • for serious congenital disorders of the immune system and some lymphoproliferative and myeloproliferative disorders • complications: infectious complications                     Graft-versus-host disease • obtaining stem cells - collection from shovel hip bone                              - from umbilical cord blood                              - from peripheral blood after stimulation with GM-CSF

  24. b) Gene therapy • with a suitable expression vector is introduced functional gene (to replace dysfunctional gen) into the lymphocytes or stem cells • used as a treatment for some cases of SCID

  25. Substitution treatment • autologous stem cell transplantation followingchemotherapy and radiotherapy • treatment with intravenous immunoglobulin (derived from plasma of blood donors) • substitution of C1 inhibitor for hereditary angioedema • substitution of erythropoietin in patients with chronic renal failure • substitution of G-CSF in agranulocytosis

  26. Immunomodulation = medical procedure to adjust the disrupted immune function Non-specific immunosuppressive therapy • nonspecific = affects not only autoreactive and aloreactive                        lymphocytes, but also other components of immunity (risk of reduction antiinfectious and anti- tumor immunity) • used for treatment of autoimmune diseases, severe allergic conditions and for organ transplantation

  27. Non-specific immunosuppressive therapy • corticosteroids - anti-inflammatory, immunosuppressive effects                    - blocking the activity of transcription factors (AP-1, NFkB)                    - suppress the expression of genes (IL-2, IL-1, phospholipase A, MHC gp II, adhesion molecules)                   - inhibition of histamine release from basophils                    - higher concentrations induce apoptosis of lymfocytes • immunosuppressants affecting the metabolism of DNA - cyclophosphamide (alkylating agent)                         - methotrexate (antimetabolite) - azathioprine (purine analogue)

  28. immunosuppressant selectively inhibiting T lymphocytes - immunosuppressive ATB: cyclosporine A, tacrolimus, rapamycin (suppressing the expression of IL-2 and IL-2R in activated T lymphocytes)                 - monoclonal antibody anti-CD3 (Immunosuppression after transplantation, treatment of rejection crises) • immunoglobulins in the immunosuppressive indication- Polyspecific intravenous immunoglobulins                    (Inhibition of B lymphocytes, antiidiotype activity, inhibition of cytokines, neutralization of toxins, inhibition of complement activation ...)

  29. Anti-inflammatory and antiallergic treatment • nonsteroidal anti-inflammatory drugs • antihistamines - blocking H1 receptor                          - reduce the expression of adhesion molecules                          - reduce the secretion of histamine ... • inhibitors of inflammatory cytokine - receptor antagonist for IL-1                          - monoclonal antibodies against TNF                          - thalidomide (TNF inhibitor) • enzyme therapy - in the enzyme mixture has a major effect trypsin and bromelain                            - anti-inflammatory and immunomodulatory effects

  30. Non-specific immunostimulant therapy • synthetic immunomodulators • Methisoprinol (Isoprinosine) - used in viral infections with more severe or relapsing course • bacterial extracts and lysates • Broncho-Vaxom - prevention of recurrent respiratory tract infections • Ribomunyl • products of the immune system • IL-2 - renal adenocarcinoma • IFNa, IFNb - viral hepatitis, some leukemia • Erythropoietin – renal failure • G-CSF, GM-CSF – neutropenia • Transfer factor (blood donors leukocytes undergoing dialysis) • Thymus hormones

  31. Antigen-specific immunomodulatory therapy • specificimmunomodulation = induceanimmune response or tolerance against a specific antigen A) activeimmunization B) passiveimmunization C) specificimmunosuppression

  32. activeimmunization= use of antigen to induceanimmune response thatcanlaterprotectagainst a pathogenbearingthe antigen (orsimilar antigen) • immunizationvaccines are made frominactivatedorattenuatedmicroorganismsortheirantigens (polysaccharidecapsule, toxins) • creates long-term immunity • activatesspecificcellular and humoralimmunity • administrationof antigen injectableor oral • prophylaxis • risk ofinfectionoranaphylacticreactions

  33. b) passive immunization • natural - transfer of maternal antibodies in fetal blood • therapeutically - the use of animal antibodies against various toxins (snake toxins, tetanus toxin, botulinum toxin) • prophylaxis - the human immunoglobulin from immunized individuals (hepatitis A, rabies, tetanus)                     - Anti-RhD antibodies - preventing maternal immunization with RhD+ fetus • provides a temporary (3 weeks) specific humoral immunity • the risk anaphylactic reactions

  34. c) specific immunosuppression= induction of tolerance to a specific antigen • ongoing clinical studies • induction of tolerance by oral administration of antigen (treatment of certain autoimmune diseases) • allergen immunotherapy (pollen, insect poisons) d) vaccination against cancer • immunization by dendritic cells

  35. THANK YOU FOR YOUR ATTENTION

More Related