1 / 45

Elementary Graph Algorithms

Elementary Graph Algorithms. Representations of graphs: undirected graph. 一個 Undirected graph ( 無向圖 ) ,有 5 個點 7 個邊: 無向圖 G=(V,E) , V 代表點集合, E 代表邊集合。 E 中的元素形式為集合 {u,v} ,代表邊的兩端。. 1. 2. 3. 5. 4. 2. 5. 1. 1. 3. 4. 5. 2. 2. 4. 3. 2. 3. 5. 4. 1. 2. 4. 5. Adjacency-list.

guy-emerson
Download Presentation

Elementary Graph Algorithms

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Elementary Graph Algorithms

  2. Representations of graphs:undirected graph • 一個Undirected graph (無向圖),有5個點7個邊: • 無向圖G=(V,E),V代表點集合,E代表邊集合。E中的元素形式為集合{u,v},代表邊的兩端。 1 2 3 5 4 Elementary Graph Algorithms

  3. 2 5 1 1 3 4 5 2 2 4 3 2 3 5 4 1 2 4 5 Adjacency-list • 可藉由Adjacency-list表示,將每個點相鄰的點集合用一個List存起來。 Elementary Graph Algorithms

  4. Adjacency-array • 可藉由Adjacency-array表示,利用一個二維陣列將每對點之間是否有邊連起來,有存1,沒有存0。 Elementary Graph Algorithms

  5. Representations of graphs: Directed graph • 一個Directed graph (有向圖),有5個點8個邊: • 有向圖G=(V,E),V代表點集合,E代表邊集合。E中的元素形式為(u,v),u代表起點,v代表中點。 1 2 3 5 4 Elementary Graph Algorithms

  6. 2 5 1 3 4 2 3 4 3 1 4 4 5 Adjacency-list • 可藉由Adjacency-list表示,將每個點所指向的點集合存在List中。 Elementary Graph Algorithms

  7. Adjacency-array • 可藉由Adjacency-array表示,利用一個二維陣列A存,若(u,v)是一個邊則A[u][v]=1反之A[u][v]=0。 Elementary Graph Algorithms

  8. Breadth-first search • Breadth-first search(簡稱BFS,先廣搜尋)是最簡單的圖形搜尋演算法之一。 • 用於搜尋圖形G中,所有自點s開始出發,有路徑可以到達的點。 • BFS利用Queue作為儲存將要探索的點的資料結構。 Elementary Graph Algorithms

  9. Breadth-first search • BFS是許多重要的圖形演算法的原型,如 Prim’s minimum spanning tree演算法以及Dijkstra’s single-source shortest-path演算法。 Elementary Graph Algorithms

  10. r s t u Q ∞ 0 ∞ ∞ (a) s 0 ∞ ∞ ∞ ∞ v w x y r s t u Q 1 0 ∞ ∞ (b) w r 1 1 ∞ 1 ∞ ∞ v w x y r s t u Q 1 0 2 ∞ (c) r t x 1 2 2 ∞ 1 2 ∞ v w x y BFS的運作範例 Elementary Graph Algorithms

  11. BFS的運作範例 r s t u Q 1 0 2 ∞ (d) t x v 2 2 2 2 1 2 ∞ v w x y r s t u Q 1 0 2 3 (e) v u x 2 2 3 2 1 2 ∞ v w x y r s t u Q 1 0 2 3 (f) v u y 2 3 3 2 1 2 3 v w x y Elementary Graph Algorithms

  12. BFS的運作範例 r s t u Q 1 0 2 3 (g) u y 3 3 2 1 2 3 v w x y r s t u Q 1 0 2 3 (h) y 3 2 1 2 3 v w x y r s t u Q 1 0 2 3 (i) empty 2 1 2 3 v w x y Elementary Graph Algorithms

  13. BFS演算法 • 起始點是s。 • 初始化時,將所有的點塗成白色。 • 已經發現的點,塗成綠色。 • 已經展開所有相鄰節點的點,塗成紅色。 • u.d儲存s到u的距離。 • u.π儲存自s到u的最短路徑中,u之前的一個點。 Elementary Graph Algorithms

  14. Time Complexity: O(|E|+|V|) BFS(G,s) • for each vertex u∈ G.V-{s} • u.color = WHITE • u.d = ∞ • u.π = NIL • s.color = GREEN • s.d = 0 • s.π = NIL • Q = empty • Enqueue(Q,s) • while Q≠empty • u = Dequeue(Q) • for each v∈ G.Adj[u] • if v.color == WHITE • v.color = GREEN • v.d = u.d + 1 • v.π = u • Enqueue(Q,v) • u.color = RED Elementary Graph Algorithms

  15. BFS演算法的性質 • 執行過BFS之後,自s可達的點都被塗成紅色。 • 如v是s可達的點,則v.d代表s到v的最短路徑長。 • 如v是s可達的點,則(v.π, v)是某條自s到v最短路徑的一個邊。 Elementary Graph Algorithms

  16. r s t u 1 0 2 3 2 1 2 3 v w x y BFS演算法的性質 • 邊集合T={(v.π,v): v自s可達}形成一個breadth-first tree。 藍色的邊形成一個Breadth-first tree Elementary Graph Algorithms

  17. Print path演算法 • 可在執行過BFS演算法的圖上印出s到v的最短路徑。如無路徑也會印出沒有路徑的訊息。 Print-Path(G,s,v) • if v == s • print s • elseif v.π== NIL • print “no path from” s “to” v • else Print-Path(G,s,v.π) • print v Elementary Graph Algorithms

  18. Depth-first search • Depth-first search(簡稱DFS,先深搜尋)是最簡單的圖形搜尋演算法之一。同樣用於搜尋圖形G中,所有自點s開始出發,有路徑可以到達的點。 • DFS利用Stack作為儲存已經開始探索但尚未結束的點的資料結構。 • 相較於BFS,DFS可以利用程式語言的遞迴來避免自行實做資料結構。 Elementary Graph Algorithms

  19. DFS演算法 • 起始點是s。 • 初始化時,將所有的點塗成白色。 • 點初次被發現的時候,塗成灰色。 • 點做完DFS-Visit的時候,塗成黑色。 • u.d儲存u被發現的時間。 • u.f儲存u做完DFS-Visit的時間。 • u.d < u.f Elementary Graph Algorithms

  20. DFS運作範例 發現時間 (a) (b) v w v w u u 1/ 1/ 2/ y z y z x x (c) (d) v w v w u u 1/ 2/ 1/ 2/ 3/ 4/ 3/ y z y z x x Elementary Graph Algorithms

  21. DFS運作範例 (e) (f) v w v w u u 1/ 2/ 1/ 2/ B B 4/ 3/ 4/5 3/ y z y z x x (g) v w u (h) v w u 1/ 2/ 1/ 2/7 B B 4/5 3/6 4/5 3/6 y z x y z x Elementary Graph Algorithms

  22. DFS運作範例 (i) v w u (j) v w u 1/ 2/7 1/8 2/7 B B F F 4/5 3/6 4/5 3/6 y z x y z x (k) v w u (l) v w u 1/8 2/7 9/ 1/8 2/7 9/ B F B C F 4/5 3/6 4/5 3/6 y z x y z x Elementary Graph Algorithms

  23. DFS運作範例 (m) v w u (n) v w u 1/8 2/7 9/ 1/8 2/7 9/ B C B F C F B 4/5 3/6 10/ 4/5 3/6 10/ y z x y z x (o) (o) v w v w u u 1/8 2/7 9/ 1/8 2/7 9/12 B B C C F F B B 4/5 3/6 10/11 4/5 3/6 10/11 y z y z x x Elementary Graph Algorithms

  24. DFS演算法 DFS(G) • for each vertex u∈ G.V • do u.color = WHITE • u.π = NIL • time = 0 • for each vertex u ∈ G.V • if u.color == WHITE • DFS-Visit(G,u) Elementary Graph Algorithms

  25. DFS-Visit演算法 DFS-Visit(G, u) • time = time+1 //u has just been discovered • u.d = time • u.color = GRAY • for each v ∈ G.Adj[u] • if v.color == WHITE • v.π = u • DFS-Visit(G, v) • u.color = BLACK //DFS-Visit(G, u) is done • time = time + 1 • u.f = time Elementary Graph Algorithms

  26. DFS的性質 • DFS演算法的時間複雜度為O(|V|+|E|)。 • 執行過DFS演算法之後,所有的點都是黑色的。 • {(v.π,v):v.π≠NIL}將形成一個Depth-first forest,也就是一個元素為Depth-first tree的集合。 • 如u到v之間在Depth-first forest中有一路徑,則稱u是v的ancestor,稱v是u的descendant。 Elementary Graph Algorithms

  27. 邊的分類 • 假定邊為(u,v) • Tree edges: 若初次發現v時是藉由(u,v),即v.π=u,則此邊稱作tree edge。 • Back edges: 若v是u的ancestor,則此邊稱作back edge。 • Forward edges: 若v是u的descendant且(u,v)不是tree edge,則此邊稱作forward edge。 • Cross edges: 不屬於前三類的邊均稱為Cross edges。 Elementary Graph Algorithms

  28. (a) t z s y 11/16 3/6 2/9 1/10 B F C B 14/15 4/5 7/8 12/13 C C C u w v x (b) s t z v u w y x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ( s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t) Elementary Graph Algorithms

  29. (c) s t C B F z C u v B C y w C x Elementary Graph Algorithms

  30. Topological sort • 對一DAG (Directed acyclic graph,有向無迴圈圖) G=(V,E),Topological sort(拓樸排序)是一對V的排序,其中若(u,v) ∈ E則在排序中u必須排在v之前。 • 常用於決定排程。 Elementary Graph Algorithms

  31. 內褲 襪子 手錶 長褲 鞋子 襯衫 皮帶 領帶 夾克 襪子 內褲 長褲 鞋子 手錶 襯衫 皮帶 領帶 夾克 一個表示穿衣服先後順序的圖 經拓樸排序後,可依此順序穿上所有衣物。 Elementary Graph Algorithms

  32. Topological sort演算法 • 利用DFS演算法,計算出每一個點u的Finish time (u.f)。 • 當一個點執行完畢DFS-Visit時,將該點放入一公用的Linked List前端。 • 最後此Linked List存放的順序即為一Topological sort。 Elementary Graph Algorithms

  33. 內褲 襪子 17/18 11/16 手錶 9/10 12/15 長褲 鞋子 13/14 1/8 襯衫 皮帶 領帶 2/5 6/7 夾克 3/4 襪子 內褲 長褲 鞋子 手錶 襯衫 皮帶 領帶 夾克 17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4 Topological sort操作範例 每個點旁的數字代表Discovery time/Finish Time 以上為公用的Linked List在執行完DFS之後的順序。

  34. Lemma 22.11: A directed graph G is acyclic iff DFS(G) yields no back edges. Pf:  Suppose there is a back edge (u,v), v is an ancestor of u. Thus there is a path from v to u and a cycle exists. Suppose G has a cycle c. We show DFS(G) yields a back edge. Let v be the first vertex to be discovered in c, and (u,v) be the preceding edge in c. At time v.d, there is a path of white vertices from v to u. By the white-path thm., u becomes a descendant of v in the DF forest. Thus (u,v)is a back edge. Elementary Graph Algorithms

  35. Thm 22.12 TOPOLOGICAL-SORT(G) produces a topological sort of G pf: • Suppose DFS is run to determinate finishing times for vertices. • It suffices to show that for any pair of u,v , if there is an edge from u to v, then v.f < u.f. • When (u,v) is explored by DFS(G), v cannot be gray. • Therefore v must be either white or black. 1. If v is white, it becomes a descendant of u, so v.f<u.f 2. If v is black, then v.f<u.f Elementary Graph Algorithms

  36. Strongly connected components • 對一個有向圖G=(V,E)而言,一個Strongly Connected Component C是一個滿足下列條件的點集合: • C⊆V • 對任C中相異兩點u及v,存在一條路徑由u到v且有另一路徑由v到u。 Elementary Graph Algorithms

  37. Elementary Graph Algorithms

  38. Strongly connected components演算法 • 呼叫DFS(G)對所有點u,計算出u.f,即finishing time。 • 計算出GT,即點集合與G相同,而邊連接方向相反的圖。 • 呼叫DFS(GT),但在DFS主迴圈中,選擇點的順序是先挑取u.f值較大的點u。(即以u.f遞減順序挑取。) • 在DFS(GT)的Depth-first forest中,每一個樹均是一個Strongly connected component。 Elementary Graph Algorithms

  39. a b c d 13/14 11/16 1/10 8/9 G: 12/15 3/4 2/7 5/6 cd e f g h abe h a b c d 13/14 11/16 1/10 8/9 fg GT: 12/15 3/4 2/7 5/6 e f g h

  40. Lemma 22.13 : Let C and C’ be distinct strongly connected components in directed graph G=(V, E), let u, v in C and u’, v’ in C’, and suppose there is a path from u to u’ in G. Then there cannot also be a path from v’ to v in G. Def: Let U  V, define d(U) = min u U { u.d } f (U) = max u U { u.f } Elementary Graph Algorithms

  41. Lemma 22.14 Let C and C’ be distinct strongly connected components in directed graph G=(V, E). Suppose that there is an edge (u, v) in E, where u in C and v in C’. Then f (C) > f ( C’). pf: Case (1): • If d(C) < d(C’): let x be the 1st discovered vertex in C. • At time x.d all vertices in C and C’ are white. • There is a path from x to all (white) vertices in C and to all vertices in C’: x~↝ u  v ~↝ w. • All vertices in C and C’ are descendants of x. Thus x.f = f (C) > f(C’). Elementary Graph Algorithms

  42. Lemma 22.14 Let C and C’ be distinct strongly connected components in directed graph G=(V, E). Suppose that there is an edge (u, v) in E, where u in C and v in C’. Then f (C) > f ( C’). pf: Case (2): • If d(C) > d(C’): let y be the 1st discovered vertex in C’. • At time y.d all vertices in C’ are white and there is a path from y to all vertices in C’. • I.e. all vertices in C’ are descendants of y. • So y.f = f(C’). There cannot be a path from C’ to C. Why? • Thus any w in C has w.f > y.f and so f(C) > f(C’). Elementary Graph Algorithms

  43. Corollary 22.15: Let C and C’ be distinct strongly connected components in directed graph G=(V, E). Suppose that there is an edge (u, v) in ET, where u in C and v in C’. Then f ( C ) < f ( C’ ). Pf: It is clear that (v, u) is in E. By the previous lemma we have f( C’ ) > f ( C ). Elementary Graph Algorithms

  44. Theorem 22.16 Strongly-Connected-Component(G) correctly computes the strongly connected components of a directed graph. pf: • By induction on the number (k) of depth-first trees found in the DFS of GT, where each tree forms a strongly connected component. • Basis: trivial for k=0. • Inductive step: assume each of the first k DFS trees produced in line 3 is a SCC. • Consider the (k+1)-st tree produced. Let u be the root of this tree and let u be in SCC C. • Thus u.f = f ( C ) > f ( C’ ) for any other SCC C’ yet to be visited. Note we visit in decreasing finishing time. Elementary Graph Algorithms

  45. All other vertices in C are descendant of u in its DFS. • By inductive hypothesis and the Corollary 15 any edges in GT that leave C must be to SCC’s already visited. • Thus, no vertex in any SCC other than C will be a descendant of u during the DFS of GT. • Thus, the vertices of the DFS tree in GT that is rooted at u form exactly one SCC.  Elementary Graph Algorithms

More Related