190 likes | 348 Views
Controllability:. PBH test for diagonal case. PBH test for block Jordan diagonal case. Observability. PBH test for diagonal case. PBH test for block Jordan diagonal case. C.C., C.O. and TF poles/zeros. State Feedback. D. r. +. u. +. 1 s. x. +. y. B. C. +. -. +. A.
E N D
State Feedback D r + u + 1 s x + y B C + - + A K feedback from state x to control u
Pole placement Solve this to get k’s.
Pole placement In Matlab: Given A,B,C,D ①Compute QC=ctrb(A,B) ②Check rank(QC) If it is n, then ③Select any n eigenvalues(must be in complex conjugate pairs) ev=[λ1; λ2; λ3;…; λn] ④Compute: K=place(A,B,ev) A+Bk will have eigenvalues at these values
Invariance under state feedback Thm: Controllability is unchanged after state feedback. But observability may change!
Example A = 1 2 3 4 5 6 7 8 9 >> B B = 1 0 1 >> C C = 2 1 0 Ab = 11.5 11.0 10.5 5.5 5.0 4.5 -0.5 -1.0 -1.5 >> Bb Bb = 0 1 0 >> Cb Cb = 1 2 3 Find the transformation relating the two.
[P1, J1]=jordan(A) P1 = -1.2833 0.2833 1.0000 -0.1417 0.6417 -2.0000 1.0000 1.0000 1.0000 J1 = -1.1168 0 0 0 16.1168 0 0 0 0 [P2, J2]=jordan(Ab) P2 = -0.8832 -18.1168 1.0000 0.0584 -8.5584 -2.0000 1.0000 1.0000 1.0000 J2 = -1.1168 0 0 0 16.1168 0 0 0 0
P0=P1*inv(P2) P0 = 0.3182 -0.8182 -0.9545 -0.3409 0.5909 -0.4773 0 0.0000 1.0000 P = 0 1 1 1 0 1 1 1 0 Abb=P0\A*P0 Abb = 11.5000 11.0000 10.5000 5.5000 5.0000 4.5000 -0.5000 -1.0000 -1.5000 Ab = 11.5 11.0 10.5 5.5 5.0 4.5 -0.5 -1.0 -1.5