1 / 45

Project Management

Project Management. Class 2: 1/19/11. 3- 2. OBJECTIVES . Definition of Project Management Work Breakdown Structure Project Control Charts Structuring Projects Critical Path Scheduling. 3- 3. Project Examples. Building: a ship, a satellite, an oil rig, and a nuclear plant.

gyala
Download Presentation

Project Management

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Project Management Class 2: 1/19/11

  2. 3-2 OBJECTIVES • Definition of Project Management • Work Breakdown Structure • Project Control Charts • Structuring Projects • Critical Path Scheduling

  3. 3-3 Project Examples • Building: a ship, a satellite, an oil rig, and a nuclear plant. • Developing: computer programs, an advertising campaign, a new product, a new process, and training materials. • Implementing: new technologies and work procedures.

  4. 3-4 Project Management Defined • A Project is a series of related jobs usually directed toward some major output and requiring a significant period of time to perform • Project Management are the management activities of planning, directing, and controlling resources (people, equipment, material) to meet the technical, cost, and time constraints of a project

  5. 3-5 Objectives of a Project

  6. 3-6 Objectives of a Project The 4th dimension: client satisfaction

  7. 3-7 Project Life Cycle Project Life Cycle: changing patterns of resource usage and level of activity over the course of the project

  8. 3-8 Project Life Cycle • Stages of a Conventional Project: • Slow beginning • Buildup of size • Peak • Begin a decline • Termination

  9. 3-9 Project Life Cycle

  10. 3-10 Project Life Cycle Time distribution of project effort is characterized by slow-rapid-slow

  11. 3-11 Project Life Cycle • Try to avoid the “90-90 rule of project management”: The first 90% of the project takes 90% of the time, the last 10% takes the other 90%.

  12. 3-12 Project Life Cycle What does this rule really mean?

  13. 3-13 Project Life Cycle • During the life cycle cycle, project management is accomplished through the use of processes such as: • Initiating, planning, executing, controlling, and closing • Many of these processes are iterative in nature because the project is being progressively elaborated

  14. 3-14 Defining Project Objectives Why Set Project Objectives • To provide direction for project activities • To enable measuring results against prior exceptions • Resource usage (manpower, materials, etc.) • Schedule integrity • Quality of work • To determine specific goals which will provide maximum effectiveness of project activities

  15. 3-15 Defining Project Objectives Requirements for Project Objectives • Achievable (time, resources, staff) • Understandable (vs. complex) • Specific (vs. general, vague statements) • Tangible (“deliverables”) • Measurable (resources, schedule, quality) • Consistent (with strategy, programs, policies, procedures) • Assignable (department or individual)

  16. 3-16 Defining Project Objectives Some Problems in Setting Objectives • Stating activities rather than deliverables • Exceeding the scope of the defined project • Failing to be specific • Omitting important deliverables • Inconsistency with stated policies

  17. 3-17 Defining Project Objectives Example: D.U. Singer Project Title: Permanent Antiseptic Production Start-Up • Objectives: • Develop a comprehensive plan for the production of a new, permanent antiseptic • Complete development and testing of a manufacturing process that: • Meets all current FDA, EPA, and OSHA regulations as well as internal specifications • produces 95% yield of product (full packaged) at a level of 80% of full production goal of 10 million liters per year

  18. 3-18

  19. 3-19 Another problem in objective setting …

  20. 3-20 Level Program 1 Project 1 Project 2 2 Task 1.1 Task 1.2 3 Subtask 1.1.1 Subtask 1.1.2 4 Work Package 1.1.1.1 Work Package 1.1.1.2 Work Breakdown Structure Awork breakdown structuredefines the hierarchy of project tasks, subtasks, and work packages

  21. 3-21 Work Breakdown Structure Program: New Product Introduction 1.0 Project 1: Engineering Development 1.1 Task 1: Run pilot test 1.2 Task 2: Review process costs and efficiencies 1.3 Task 3: Prepare Capital Equipment List 2.0 Project 2: Market Survey 2.1 Task 1: Complete Market Survey 2.2 Task 2: Analyze Survey Results 2.3 Task 3: Prepare Marketing Plan

  22. 3-22 Work Breakdown Structure 3.0 Project 3: Manufacturing Start-up 3.1 Task 1: Install and Test New Equipment 3.2 Task 2: Establish Manufacturing Procedures 3.3 Task 3: Detailed Testing of Initial Output 4.0 Project 4: Sales Force Training 4.1 Task 1: Select Sales People 4.2 Task 2: Select Distributors 4.3 Task 3: Train Sales Force and Distributors

  23. 3-23 Gantt Chart Vertical Axis: Always Activities or Jobs Horizontal bars used to denote length of time for each activity or job. Activity 1 Activity 2 Activity 3 Activity 4 Activity 5 Activity 6 Time Horizontal Axis: Always Time

  24. 3-24 Service Activities for A Delta Jet During a 60 Minute Layover

  25. 3-25 Network-Planning Models • A project is made up of a sequence of activities that form a network representing a project • The path taking longest time through this network of activities is called the “critical path” • The critical path provides a wide range of scheduling information useful in managing a project • Critical Path Method (CPM) helps to identify the critical path(s) in the project networks

  26. 3-26 Prerequisites for Critical Path Methodology A project must have: well-defined jobs or tasks whose completion marks the end of the project; independent jobs or tasks; and tasks that follow a given sequence.

  27. 3-27 Steps in the CPMMethod • Activity Identification • Activity Sequencing and Network Construction • Determine the critical path • From the critical path all of the project and activity timing information can be obtained

  28. 3-28 Activity Designation Immed. Pred. Time (Weeks) Assess customer's needs A None 2 Write and submit proposal B A 1 Obtain approval C B 1 Develop service vision and goals D C 2 Train employees E C 5 Quality improvement pilot groups F D, E 5 Write assessment report G F 1 CPMExample Consider the following consulting project: Develop a critical path diagram and determine the duration of the critical path and slack times for all activities.

  29. 3-29 D(2) G(1) A(2) B(1) F(5) C(1) E(5) First draw the network Act. Imed. Pred. Time A None 2 B A 1 C B 1 D C 2 E C 5 F D,E 5 G F 1

  30. 3-30 Find the Critical Path • Activities on the critical path cannot be delayed without delaying the completion of the project • There are two paths: A – B – C – D – F – G: 12 weeks A – B – C – E – F – G: 15 weeks • Activity D can be delayed by up to 3 weeks without delaying the project • The longest path is critical – why?

  31. 3-31 Determine early starts and early finish times ES=4 EF=6 D(2) ES=0 EF=2 ES=2 EF=3 ES=3 EF=4 ES=9 EF=14 ES=14 EF=15 G(1) A(2) B(1) C(1) F(5) ES=4 EF=9 Hint: Start with ES=0 and go forward in the network from A to G. E(5)

  32. 3-32 D(2) ES=9 EF=14 ES=14 EF=15 G(1) A(2) B(1) F(5) LS=0 LF=2 LS=2 LF=3 LS=3 LF=4 E(5) Determine late starts and late finish times Hint: Start with LF=15 or the total time of the project and go backward in the network from G to A. ES=4 EF=6 ES=0 EF=2 ES=2 EF=3 ES=3 EF=4 LS=7 LF=9 C(1) ES=4 EF=9 LS=9 LF=14 LS=14 LF=15 LS=4 LF=9

  33. 3-33 Slack=(7-4)=(9-6)= 3 Wks ES=9 EF=14 ES=14 EF=15 G(1) A(2) B(1) F(5) LS=0 LF=2 LS=2 LF=3 LS=3 LF=4 Critical Path & Slack ES=4 EF=6 D(2) ES=0 EF=2 ES=2 EF=3 ES=3 EF=4 LS=7 LF=9 C(1) ES=4 EF=9 LS=9 LF=14 LS=14 LF=15 E(5) LS=4 LF=9 Duration=15 weeks

  34. 3-34 Example 2: Great Valley Hospital Project

  35. 3-35 F A C E Start H B D G Network for Great Valley Hospital Project 3 2 2 2 4 3 5 4 Arrows show precedence relationships

  36. 3-36 Critical Path for Great Valley Hospital Project F A C E Start H B D G Arrows show precedence relationships

  37. 3-37 Critical Path for Great Valley Hospital Project • Four paths in the network: Path 1: Start – A – C – F – H: 9 weeks Path 2: Start – A – C – E – G – H: 15 weeks Path 3: Start – A – D – G – H: 13 weeks Path 4: Start – B – D – G – H: 14 weeks • Path 2 is critical See GreatValley.mpp

  38. 3-38 Critical Path for Great Valley Hospital Project • A, C, E, G, and H are on the critical path and so they have 0 slack • B is on path 4, so its slack is 15 – 14 = 1 • D is on paths 3 and 4, so its slack is 15 – Max (13,14) = 1 • F is on path 1, so its slack is 15 – 9 = 6 • An activity can be delayed by its slack and not delay the project completion

  39. 3-39 Activity Name Earliest Start Earliest Finish ES EF Latest Start LS LF Activity Duration Critical Path Analysis Setup Latest Finish

  40. 3-40 A C F F 0 2 2 4 4 7 H H H A 2 C 4 13 0 2 10 2 2 3 E H Slack=0 Slack=0 Slack=6 4 8 13 15 0 0 H F H H Start 8 4 15 13 0 0 4 2 0 Slack=0 Start B D G B D G 0 3 3 7 8 13 H H H 4 8 13 1 4 8 3 4 5 Slack=1 Slack=1 Slack=0 Critical Path Analysis for Great Valley Hospital Project Determine early starts and early finish times Slack=0

  41. 3-41 Great Valley General Hospital 1 2 3 4 5 6 7 8 9 10 1112 13 1415 16 A Build internal components B Modify roof and floor C Construct collection stack D Pour concrete and install frame E Build high-temperature burner F Install pollution control system G Install air pollution device H Inspect and test Great Valley Gantt Chart: Earliest Start and Finish

  42. 3-42 Time-Cost Models • In construction, incentives for completing project early • In new product development, revenue stream starts earlier if project is launched earlier • Time-Cost Models: • To accelerate the completion of a project, expedite or “crash” the critical path project activity that has the cheapest cost per unit time to shorten its duration

  43. 3-43 Steps in Time-Cost Analysis • Using normal activity times, find the critical path • Compute the crash cost per time period: Crash cost/period = (Crash cost - Normal cost)/ (Normal time - Crash time) • If there is only one critical path, select the activity on the critical path that (a) can still be crashed, and (b) has the smallest crash cost per period • If there are multiple critical paths, select the cheapest crash cost combination of critical path activities that can still be crashed that will reduce ALL critical paths by one period • Update all activity times and repeat process if further reduction in critical path time is desired

  44. 3-44 Example 3. Great Valley Hospital Project with Crashing Act. NT CT NC CC CC/WK CP? A 2 1 22,000 22,750 750 Y B 3 1 30,000 34,000 2000 N C 2 1 26,000 27,000 1,000 Y D 4 3 48,000 49,000 1,000 N E 4 2 56,000 58,000 1,000 Y F 3 2 30,000 30,500 500 N G 5 2 80,000 84,500 1,500 Y H 2 1 16,000 19,000 3,000 Y

  45. 3-45 Example 3. Great Valley Hospital Project Crashing Analysis • Select the activity with smallest crash cost per week that is on the critical path – activity A at a cost of $750 • Start – B – D – G – H is also critical (14 wks) • Crash G by 1 week at a cost of $1,500 to reduce the project by an additional week (vs. crashing C and D at a combined cost of $2,000)

More Related